
Concise Paper: SensCrypt: A Secure Protocol for
Managing Low Power Fitness Trackers

Mahmudur Rahman
Florida International University

Miami, FL

Email: mrahm004@cs.fiu.edu

Bogdan Carbunar
Florida International University

Miami, FL

Email: carbunar@cs.fiu.edu

Umut Topkara
IBM Research

Yorktown Heights, NY

Email: umut@us.ibm.com

Abstract—The increasing interest in personal telemetry has
induced a popularity surge for wearable personal fitness trackers.
Such trackers automatically collect sensor data about the user
throughout the day, and integrate it into social network accounts.
Solution providers have to strike a balance between many
constraints, leading to a design process that often puts security in
the back seat. Case in point, we reverse engineered and identified
security vulnerabilities in Fitbit Ultra and Gammon Forerunner
610, two popular and representative fitness tracker products. We
introduce FitBite and GarMax, tools to launch efficient attacks
against Fitbit and Garmin.

We devise SensCrypt, a protocol for secure data storage and
communication, for use by makers of affordable and lightweight
personal trackers. SensCrypt thwarts not only the attacks we
introduced, but also defends against powerful JTAG Read at-
tacks. We have built Sens.io, an Arduino Uno based tracker
platform, of similar capabilities but at a fraction of the cost of
current solutions. On Sens.io, SensCrypt imposes a negligible
write overhead and significantly reduces the end-to-end sync
overhead of Fitbit and Garmin.

I. INTRODUCTION

Wearable personal trackers that collect sensor data about the

wearer, have long been used for patient monitoring in health-

care. Holter Monitors [1], with large and heavy enclosures, that

use tapes for recording, have recently evolved into affordable

personal fitness trackers (e.g., [2]). Recently, popular health

centric social sensor networks have emerged. Products like

Fitbit [3], Garmin Forerunner[4] and Jawbone Up [5] require

users to carry wireless trackers that continuously record a

wide range of fitness and health parameters (e.g., steps count,

heart rate, sleep conditions), tagged with temporal and spatial

coordinates. Trackers report recorded data to a providing

server, through a specialized wireless base, that connects to

the user’s personal computer (see Figures 1(a) and 1(b)). The

services that support these trackers enable users to analyze

their fitness trends with maps and charts, and share them with

friends in their social networks.

All happening too quickly both for vendors and users alike,

this data-centric lifestyle, popularly referred to as the Quanti-

fied Self or “lifelogging” is now producing massive amounts

of intimate personal data. For instance, BodyMedia [6] has

created one of the world’s largest libraries of raw and real-

world human sensor data, with 500 trillion data points [7]. This

data is becoming the source of privacy and security concerns:

(a) (b)
Fig. 1. System components: (a) Fitbit: trackers (one cradled on the base), the
base (arrow indicated), and a user laptop. The arrow pointing to the tracker
shows the switch button, allowing the user to display various fitness data. (b)
Garmin: trackers (the watch), the base(arrow indicated), and a user laptop.

information about locations and times of user fitness activities

can be used to infer surprising information, including the times

when the user is not at home [8], and company organizational

profiles [9].

We demonstrate vulnerabilities in the storage and trans-

mission of personal fitness data in popular trackers from

Fitbit [3] and Garmin [4]. Vulnerabilities have been identified

for similar systems, including pacemakers (e.g., Halperin et

al. [10], Rasmussen et al. [11]) and glucose monitoring and

insulin delivery systems (e.g., Li et. al. [12]). The differences

in the system architecture and communication model of social

sensor networks enable us to identify and exploit different

vulnerabilities.

We have built two attack tools, FitBite and GarMax, and

show how they inspect and inject data into nearby Fitbit Ultra

and Garmin Forerunner trackers. The attacks are fast, thus

practical even during brief encounters. We believe that, the

vulnerabilities that we identified in the security of Fitbit and

Garmin are due to the many constraints faced by solution

providers, including time to release, cost of hardware, battery

life, features, mobility, usability, and utility to end user.

Unfortunately, such a constrained design process often puts

security in the back seat.

To help address these constraints, in this paper we introduce

SensCrypt, a protocol for secure fitness data storage and

transmission on lightweight personal trackers. We leverage

the unique system model of social sensor networks to encode

data stored on trackers using two pseudo-random values, one

generated on the tracker and one on the providing server. This

enables SensCrypt, unlike previous work [10], [11], to protect

not only against inspect and inject attacks, but also against978-1-4799-6204-4/14$31.00 c©2014 IEEE

attackers that physically capture and read the memory of

trackers. SensCrypt’s hardware and computation requirements

are minimal, just enough to perform low-cost symmetric key

encryption and cryptographic hashes. SensCrypt does not

impose storage overhead on trackers and ensures an even wear

of the tracker storage, extending the life of flash memories with

limited program/erase cycles.

SensCrypt is applicable to a range of sensor based plat-

forms, that includes a large number of popular fitness [3], [4],

[5], [13], [14] and home monitoring solutions [15], [16], [17],

as well as scenarios where the sensors need to be immobile

and operable without network connectivity (e.g., infrastructure,

traffic, building and campus monitoring solutions). In the

latter case, the bases through which the sensors sync with

the webserver are mobile, e.g., smartphones of workers, who

may become proximal to the sensors with the intention of data

collection or as a byproduct of routine operations.

We have developed Sens.io, a $52 tracker platform built on

Arduino Uno, of similar capabilities with current solutions.

On Sens.io, SensCrypt (i) imposes a 6ms overhead on tracker

writes, (ii) reduces the end-to-end overhead of data uploads

to 50% of that of Fitbit, and (iii) enables a server to support

large volumes of tracker communications.

While our defenses may not be immediately adopted by

existing products 1, this paper provides a foundation upon

which to create, implement and test new defensive mechanisms

for future tracker designs.

II. SYSTEM MODEL, ATTACKER AND BACKGROUND

A. System Model

We center our model on Fitbit Ultra [3] and Garmin Fore-

runner [4], two popular health centric social sensor networks

(see Figures 1(a) and 1(b)). For simplicity, we will use “Fitbit”

to refer the Fitbit Ultra and “Garmin” to denote the Garmin

Forerunner 610 solution. The system consists of user tracker

devices, USB base stations and an online social network. We

now detail each system component.

The tracker. The tracker is a wearable device that records,

stores and reports a variety of user fitness related metrics.

The Fitbit tracker measures the daily steps taken, distance

traveled, floors climbed, calories burned, the duration and

intensity of the user exercise, and sleep patterns. The Garmin

tracker records data at user set periodic intervals (1-9 seconds).

The data includes a timestamp, exercise type, average speed,

distance traveled, altitude, start and end position, heart rate

and calories burned during the past interval. The tracker has a

heart rate monitor (optional) and a 12 channel GPS receiver,

enabling the user to tag activities with spatial coordinates. Both

Fitbit and Garmin trackers have chips supporting the ANT

protocol, with a 15ft transmission range for Fitbit and 33ft for

Garmin. Each tracker has a unique id.

The base and agent module. The base connects with the

user’s main compute center (e.g., PC, laptop) and with trackers

1We have contacted Fitbit and Garmin with our results. While interested in
the security of their users, they have declined collaboration.

within transmission range (15ft for Fitbit and 33ft for Forerun-

ner) over the ANT protocol. The user needs to install an “agent

module”, a software provided by the service provider (Fitbit,

Garmin) to run on the base. The agent and base act as a bridge

between trackers and the online social network. They upload

information stored on the trackers to their users accounts on

the webserver, see Figures 1(a) and 1(b) for system snapshots.

The webserver. The online social network webserver (e.g., fit-

bit.com, connect.garmin.com), allows users to create accounts

from which they befriend and maintain contact with other

users. Upon purchase of a tracker and base, the user binds

the tracker to her social network account. In the following,

we use the term webserver to denote the computing resources

of the social network.

B. Attacker Model

We assume that the webserver is honest, and is trusted by

all participants. We assume adversaries that are able to launch

the following types of attacks:

Inspect attacks. The adversary listens on the communications

of trackers, bases and the webserver.

Inject attacks. The adversary exploits solution vulnerabilities

to modify and inject messages into the system, as well as to

jam existing communications.

Capture attacks. The adversary is able to acquire trackers

or bases of victims. The adversary can subject the captured

hardware to a variety of other attacks (e.g., Inspect and Inject)

but cannot access the memory of the hardware. We assume that

in addition to captured devices, the adversary can control any

number of trackers and bases (e.g., by purchasing them).

JTAG attacks. JTAG and boundary scan based attacks

(e.g., [18]), extend the Capture attack with the ability to access

the memory of captured devices. We focus here on “JTAG-

Read” (JTAG-R) attacks, where the attacker reads the content

of the entire tracker memory.

C. Crypto Tools

We use a symmetric key encryption system. We write

EK(M) to denote the encryption of a messageM with keyK .

We also use cryptographic hashes that are pre-image, second

pre-image and collision resistant. We use H(M) to denote

the hash of message M . We also use hash based message

authentication codes [19]: we write Hmac(K,M) to denote

the authentication code of message M with key K .

III. FITBIT AND GARMIN ATTACKS

A. Reverse Engineering Fitbit and Garmin

To log communications between trackers and webservers,

we wrote USB based filter drivers and ran them on a base.

We have used Wireshark to capture all Wi-Fi traffic between

the agent software and the webserver. To reverse engineer

Fitbit, we exploited (i) the lack of encryption in all its

communications and (ii) libfitbit [20], a library built on ANT-

FS [21] for accessing and transferring data from Fitbit trackers.

Unlike Fitbit, Garmin uses HTTPS with TLS v1.1 to send

Fig. 3. TPDC outcome on Garmin: the attacker retrieves the user’s exercise circuit on a map (shown in red on the right side), based on individual fitness
data records (shown on the left in XML format). The data record on the left includes both GPS coordinates, heart rate, speed and cadence.

Fig. 2. Fitbit Upload protocol. Enables the tracker to upload its collected
sensor data to the user’s social networking account on the webserver. Sen-
sCrypt’s Upload protocol extends this protocol, see Section IV.

user login credentials. However, similar to Fitbit, all other

communications are sent over plaintext HTTP.

Due to space limitations, we now focus on Fitbit’s data

upload protocol (see Figure 2). The communication between

the webserver and the tracker through the base contains

opcodes, commands for the tracker, e.g., TRQ-REQ, READ-

TRQ, WRITE, ERASE, CLEAR. In a nutshell, the protocol

works as follows. Upon receiving a beacon from the tracker,

the base establishes a connection with the tracker. In Phase 1,

the base contacts the webserver and sends basic client and

platform information. In Phase 2, the webserver sends the

tracker id and the opcode for retrieving tracker information

(TRQ-REQ). The base contacts the tracker, retrieves its infor-

mation TRQ-INFO (serial number, firmware version, etc.) and

sends it to the webserver. In Phase 3, the webserver retrieves

the associated tracker and user ids, then sends them to the

base along with the opcodes for retrieving fitness data from

the tracker (READ-TRQ). The base forwards this message,

retrieves the fitness data from the tracker (TRQ-DATA) and

sends it to the webserver. In the last phase, the webserver

sends to the tracker through the base, opcodes to WRITE

updates provided by the user. The webserver sends opcodes to

ERASE the fitness data from the tracker. The base forwards the

ERASE request to the tracker, who then erases the contents of

the corresponding read memory banks. The webserver replies

with the opcode to CLOSE the tracker.

B. Vulnerabilities

During the reverse engineering process, we discovered sev-

eral fundamental vulnerabilities:

Fitbit: cleartext login information. During the initial user

login via the Fitbit client software, user passwords are passed

to the webserver in cleartext and then stored in log files on

the base. Garmin uses encryption only during the login step.

Fitbit and Garmin: cleartext HTTP data processing. For

both Fitbit and Garmin, the tracker’s data upload opera-

tion uses no encryption or authentication. All the tracker-to-

webserver communications take place in cleartext.

Garmin: faulty authentication during Pairing. The authen-

tication in the Pairing procedure of Garmin assumes that the

base follows the protocol and has not been compromised by an

attacker. The authentication process is not mutual: the tracker

does not authenticate the base.

C. The FitBite and GarMax Tools

We have built FitBite and GarMax, tools that exploit the

above vulnerabilities to attack Fitbit Ultra and Garmin Fore-

runner. FitBite and GarMax consist of separate modules for (i)

discovering and binding to a nearby tracker, (ii) retrieving data

from a nearby tracker, (iii) injecting data into a nearby tracker

and (iv) injecting data into the social networking account of a

tracker owner. We have built FitBite and GarMax over ANT-

FS, in order to connect to and issue (ANT-FS) commands to

nearby trackers. The attacker needs to run FitBite or GarMax

on a base he controls.

D. Attacks and Results

Tracker Private Data Capture (TPDC). FitBite discovers

tracker devices within transmission range and captures their

fitness information: Fitbit performs no authentication during

tracker data uploads. We exploit Garmin’s assumption of an

honest base to use GarMax, running on a corrupt base, to

capture data from nearby trackers. On average, the TPDC

attack on both Fitbit and Garmin took less than 13s. Table I

Fig. 4. Outcome of Tracker Injection (TI) attack on Fitbit tracker: The daily
step count is unreasonably high (167,116 steps).

summarizes the information captured by FitBite and GarMax.

Figure 3 shows the reconstructed exercise circuit of a victim,

with data we recovered from a TPDC attack on Garmin. The

GPS location history can be used to infer the user’s home,

locations of interest, exercise and travel patterns.

Tracker Injection (TI) Attack. FitBite and GarMax use the

reverse engineered knowledge of the communication packet

format, opcode instructions and memory banks, to modify

and inject fitness data on neighboring trackers. On average,

this attack takes less than 18s, for both FitBite and GarMax.

Figure 4 shows a sample outcome of the TI attack on Fitbit.

User Account Injection (UAI) Attack. We used FitBite

and GarMax to report fabricated fitness information into our

social networking accounts. We have successfully injected

unreasonable daily step counts, e.g., 12.58 million in Fitbit.

Fitbit did not report any inconsistency, especially as the corre-

sponding distance we reported was 0.02 miles! The UAI attack

takes only 6s on average. Furthermore, by injecting fraudulent

fitness information into Earndit [22], an associated site, we

were able to accumulate undeserved rewards, including 200

Earndit points, redeemable for a $20 gift card.

IV. A PROTOCOL FOR LIGHTWEIGHT SECURITY

We now propose SensCrypt, a lightweight protocol for

providing secure data storage and communication in fitness

centric social sensor networks. Section VI also describes our

evaluation of a solution based on public key cryptosystems.

Protocol overview. Let U denote a user, T denote her tracker,

B a base and W the webserver. T ’s memory is divided into

records, each storing one snapshot of sensor data. The memory

is organized using a circular buffer structure, to ensure an even

wear. T shares a symmetric keyKT withW .W also maintains

a unique secret key KW for each tracker T .

To prevent Inject attacks, all communications between T

andW are authenticated with KT . To prevent Inspect, Capture

and JTAG-R attacks, we encode each tracker record using two

Type of data FitBite GarMax

Device info ✓ ✓

User profile, schedules, goals ✓ ✓

Fitness data ✓ ✓

(GPS) Location history ✗ ✓

TABLE I
TYPES OF DATA HARVESTED BY FITBITE AND GARMAX FROM FITBIT

AND GARMIN. GARMIN PROVIDES GPS TAGGED FITNESS INFORMATION,
WHICH GARMAX IS ABLE TO COLLECT.

Fig. 5. Example SensCrypt tracker memory (mem). Light green denotes
“clean”, unwritten areas. Red denotes areas that encode tracker sensor data.
(a) After (i-1) records have been written. The ctr is 1. (b) After Upload

occurs at state in (a). The ctr becomes 2, to enable the creation of fresh
PRNs, overwritten on the former red area.

pseudo-random numbers (PRNs). One PRN is generated by

W using KW and written on T during data sync protocols.

The other PRN is generated by T using KT at the time when

the record is written on its memory. Both PRNs can later

be reconstructed by W . This approach significantly increases

the complexity of an attack: the attacker needs to capture the

encoded data and both PRNs to recover the cleartext data.

A. The SensCrypt Protocol

Let idU , idB , and idT denote the public unique identities

of U , B, and T . U has an account with W . W manages a

database Map that has an entry for each user and tracker pair:

Map[idU , idT] = [idU , idT , KT , KW , ctr]. Each tracker is

factory initialized with a symmetric key KT and a counter ctr

initialized to 1. KT and ctr are also stored in Map[idU , idT].
KW is a per-tracker symmetric key, kept secret by W .

SensCrypt consists of 2 procedures, RecordData and

Upload. RecordData is invoked by T to record new sensor

data; Upload allows it to sync its data with W . We now

describe the organization of the tracker memory.

Tracker Memory Organization. Let mem denote the mem-

ory of T . mem is divided in “records” of fixed length (e.g.,

64 bytes for Fitbit, 80 bytes for Garmin). Each record stores

one report from the tracker’s sensors (see Section II-A). We

organize time into fixed length “epochs” (e.g., 2s long for

Fitbit, 1-9s long for Garmin). RecordData records sensor

data once per epoch.mem is organized using a circular buffer.

The dirty pointer is to the location of the first written record,

and the clean pointer is to the location of the first record

available for writing. When reaching the end of mem, both

records “circle” over to the start pointer. Figure 5 illustrates

the SensCrypt tracker storage organization, after the execution

of various RecordData and Upload procedures.

During Upload, each tracker record is reset by W to

store a pseudo-random value. That is, the i-th record of the

tracker’s memory is set to hold EKW
(ctr, i), where KW is

the secret key W stores for T . The index i ensures that each

record contains a different value. ctr counts the number of

times mem has been completely overwritten; it ensures that a

memory record is overwritten with a different encrypted value.

The RecordData Procedure. Commit newly recorded sen-

sor data D to mem, in the next available record, pointed

to by clean. T generates a new pseudo-random value,

EKT
(ctr, clean), and xors it into place with mem[clean] =

EKW
(ctr, clean) and D:

mem[clean] = D ⊕ EKT
(ctr, clean)⊕ EKW

(ctr, clean).

The clean pointer is then incremented. When reaching the end

of mem, clean circles back to start. We call “red” the written

records and “green” the records available for write. dirty and

clean enable us to reduce the communication overhead of

Upload (see next): instead of sending the entiremem, T sends

to W only the red records.
The Upload Procedure. We present the SensCrypt Upload

as an extension of the corresponding Fitbit protocol illus-

trated in Figure 2. In the following, each message M sent

between T and W is accompanied by an authentication

value Hmac(KT ,M), where Hmac is a hash based message

authentication code [19]. The receiver of the message usesKT

to verify the authenticity of the sender and of the message. For

simplicity of exposition, in the following we do not show the

Hmac value.
Upload extends steps 6b and 7 of the Fitbit Upload.

Specifically, when T receives the READ-TRQ command (step

6a), it compares the dirty and clean pointers. If dirty < clean

(see Figure 5(a)), T sends to W , through B,

T → B → W : TRQ− DATA, idT, mem[dirty..clean],

where mem[dirty..clean] denotes T ’s red memory area. For

each record i between dirty and clean, W uses keys KT and

KW and the current value of ctr to recover the sensor data:

D[i] = mem[i]⊕EKT
(ctr, i)⊕EKW

(ctr, i). Then, in step 7

of Upload (see Figure 2), W sends to T :

W → B → T : WRITE, idT, EKT(ctr+ 1, EKW(ctr+ 1, i)),

∀i=dirty..clean. T uses KT to decrypt each EKT
(ctr +

1, EKW
(ctr+1, i)) value. If the first field of the result equals

ctr+1, T overwritesmem[dirty+i] with EKW
(ctr+1, i), then

sets dirty=clean. Thus, mem[dirty.. clean] becomes green. The

case where clean < dirty, occurring when clean circles over,

past the memory end, is handled similarly, and is omitted here

for brevity. We eliminate the ERASE communication (steps 8

and 9 in Figure 2) from the Fitbit protocol.

B. SensCrypt Properties

Due to space limitations, we only briefly state the prop-

erties of SensCrypt. We will include the proofs in the full

paper version. We note that a JTAG-R attack is not able to

recover encoded sensor data on T , since it is xored to a

PRN previously generated by W . An Inspect attack fails, as

communications between T and W are encrypted, or xor-ed

with secret PRNs.
In SensCrypt, the base does not contribute to the messages

it forwards between T and W . Hence, the base does not

need to be authenticated. The use of the ctr + 1 value in

communications through the base ensures message freshness.
SensCrypt ensures an even wear of tracker memory: the

most overwritten memory record has at most 2 overwrites

more than the least overwritten record. It imposes no storage

overhead on trackers: sensor data is xor-ed in-place in mem.

SensCrypt is user friendly, as the user is never involved.

Fig. 6. Testbed for SensCrypt. Sens.io is the Arduino Uno device equipped
with Bluetooth shield and SD card is the tracker. Nexus 4 is the base.

V. SENS.IO: THE PLATFORM

We have built Sens.io, a prototype tracker, from off-the-shelves

components. It consists of an Arduino Uno Rev3 [23] and

external Bluetooth (Seeeduino V3.0) and SanDisk card shields.

The Arduino platform is a good model of resource constrained

trackers: its ATmega328 micro-controller has a 16MHz clock,

32 KB Flash memory, 2 KB SRAM and 1KB EEPROM.

The cost of Sens.io is $52 ($25 Arduino card, $20 Bluetooth

shield, $2.5 SD Card shield, $4 SD card, see Figure 6), a

fraction of Fitbit’s ($99) and Garmin’s ($299) trackers.

SensCrypt. We have implemented a general, end-to-end Sen-

sCrypt architecture, as illustrated in Figure 7. We have imple-

mented the tracker both in Arduino’s programming language (a

Wiring implementation [24]), and, for generality, in Android.

The base component (written exclusively in Android) is a

simple communication relay. We implemented the webserver

using Apache Tomcat 7.0.52 and Apache Axis2 Web services

engine. We used the MongoDB 2.4.9 database to store the

Map structure. We implemented a Bluetooth [25] serial com-

munication protocol between the tracker and the base.

The testbed. We used Sens.io for the tracker, an Android

Nexus 4 with 1.512 GHz CPU for the base, and a 2.4GHz Intel

Core i5 Dell laptop with 4GB of RAM for the webserver. We

used Bluetooth for tracker to base communications and Wi-

Fi for the connectivity between the base and the webserver.

Figure 6 illustrates our testbed.

VI. EVALUATION

We evaluate system performance on the above testbed. All

results are averages over at least 10 independent protocol runs.

Public key crypto. We have explored the feasibility of public

key cryptosystems to secure tracker storage and communica-

tions. We implemented FitCrypt, a solution where each tracker

stores a public key. The corresponding private key is only

known by the webserver. Each sensor data record is encrypted

with the public key before being stored on the tracker. FitCrypt

with RSA (FitCrypt-RSA) with a 2048 bit key takes 2.3s

to encode a single record, when run on Sens.io. We also

implemented FitCrypt-ECC, based on ECIES (Elliptic Curve

Integrated Encryption Scheme), an elliptic curve crypto (ECC)

Fig. 7. SensCrypt architecture. The tracker relies on locally stored key KT

to authenticate webserver messages and encode sensor data. The webserver
manages the Map structure, to authenticate and decrypt tracker reports.

solution that uses a 224 bit key size, the security equivalent of

RSA with 2048 bit modulus. When run on Sens.io, FitCrypt-

ECC takes 2.5s to encode a single sensor record. When the

data recording frequency is lower than once in 3s, FitCrypt

(RSA and ECC) cannot complete the operation on time.

A. Sens.io Performance

Tracker: RecordData overhead. On Sens.io, SensCrypt’s

RecordData takes 6.02ms to encode Fitbit data and 6.06ms

for Garmin data. Unlike FitCrypt (RSA and ECC), SensCrypt

is a viable alternative for resource constrained trackers.

Webserver: Storage overhead. The structure Map stores a

record for each user and tracker pair, consisting of user and

tracker ids (8 byte long each), a salt (16B), password hash

(28B), 2 symmetric keys (32B each) and a counter (1B). Thus,

a Map entry stores 133 bytes. For a 1 million user base, the

Map size is 127MB. The average time to retrieve a record

from the MongoDB representation of this Map is 158ms.

End-to-end Upload overhead. We consider a “Fitbit” sce-

nario where the Upload procedure runs once every 15 min-

utes. With a RecordData frequency of once every 2s (usual

in Garmin), and a record size of 64B, SensCrypt uploads

and overwrites 71 blocks of 512B each. The tracker side

of SensCrypt’s Upload procedure takes 502ms. The 200ms

server overhead is dominated by the 158ms of retrieving a

record from a 1 million entry Map. Due to Arduino RAM

limitations, the communication cost of SensCrypt’s Upload is

153ms. SensCrypt’s total Upload time is thus 846ms, 12 times

faster than FitCrypt (whose total exceeds 10s) and twice faster

than Fitbit’s Upload (1481ms on average). This gain is partly

due to SensCrypt’s optimization of only uploading the written

blocks, instead of the entire memory.

VII. COMPARISON WITH STATE OF THE ART

In the context of implantable medical devices (IMDs)

Halperin et al. [10] propose zero power notification, au-

thentication and key exchange solutions, while Rasmussen et

al. [11] propose proximity based access control solutions. The

different mission of fitness trackers creates different design

constraints. First, unlike IMD security, where the focus is on

authentication and key exchange, SensCrypt’s focus is on the

secure storage and communication of tracker data. This is

further emphasized by our need to also consider attackers that

can perform Capture and JTAG-R attacks, for both trackers and

bases (readers in the IMD context). While such attacks may

not be possible for IMDs, and IMD readers may be expensive

enough to afford tamper proof memory, these assumptions

do not hold for most existing fitness social sensor network

solutions. Furthermore, user interaction is natural for several

IMD solutions. To avoid annoying users, fitness security

solutions should minimize user involvement.

VIII. CONCLUSIONS

We identified and exploited vulnerabilities in the design of

Fitbit and Garmin, to launch inspection and injection attacks.

We presented SensCrypt, a secure and efficient solution for

storing and communicating tracker sensor data. SensCrypt

imposes minimal computation and communication overhead

on trackers, and is resilient even to attackers able to probe the

memory of captured trackers.

IX. ACKNOWLEDGMENTS

This work has been supported by the US ARMY through

award W911NF-13-1-0142.

REFERENCES

[1] Holter Monitor. https://en.wikipedia.org/wiki/Holter monitor.
[2] Nike+. http://nikeplus.nike.com/plus/.
[3] Fitbit. http://fitbit.com/.
[4] Garmin Forerunner. http://sites.garmin.com/forerunner610/.
[5] Jawbone UP24. https://jawbone.com/up.
[6] Body Media. http://www.bodymedia.com/.
[7] Jawbone takes a big bite out of health tech: acquires BodyMedia,

launches Up app platform. http://venturebeat.com/2013/04/30/jawbone-
takes-a-big-bite-out-of-health-tech-acquires-bodymedia-launches-up-
app-platform.

[8] Please Rob Me. http://www.http://pleaserobme.com/.
[9] Kota Tsubouchi, Ryoma Kawajiri, and Masamichi Shimosaka. Working-

relationship detection from fitbit sensor data. In Proceedings of the

2013 ACM conference on Pervasive and ubiquitous computing adjunct
publication, UbiComp ’13 Adjunct, pages 115–118, 2013.

[10] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. Maisel. Pacemakers and
implantable cardiac defibrillators: Software radio attacks and zero-power
defenses. In Proceedings of IEEE Symposium on Security and Privacy,
pages 129–142, 2008.

[11] K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, and S. Capkun.
Proximity-based access control for implantable medical devices. In ACM

Conference on Computer and Communications Security, 2009.
[12] Chunxiao Li, A. Raghunathan, and N.K. Jha. Hijacking an insulin

pump: Security attacks and defenses for a diabetes therapy system.
In Proceedings of the IEEE International Conference on e-Health

Networking Applications and Services (Healthcom), 2011.
[13] Mototola MotoActv. http://www.motorola.com/us/

MOTOACTV-16GB-Golf-Edition/121481.html.
[14] Basis B1. http://www.mybasis.com/.
[15] Nest Thermostat. https://nest.com/thermostat/life-with-nest-thermostat/.
[16] WeMo Switch. http://www.belkin.com/us/p/P-F7C027/.
[17] Sense: The meaning of life. https://sen.se/store/mother/.
[18] Ing Breeuwsma. Forensic imaging of embedded systems using JTAG

(boundary-scan). Digital Investigation, 3, 2006.
[19] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions

for message authentication. In Proceedings of the 16th Annual Inter-

national Cryptology Conference on Advances in Cryptology, CRYPTO
’96, pages 1–15, 1996.

[20] Libfitbit: Library for accessing and transfering data from the fitbit health
device. https://github.com/qdot/libfitbit.

[21] ANT-FS and FIT. http://www.thisisant.com/developer/ant/ant-fs-and-fit.
[22] Earndit: We reward you for exercising. http://earndit.com/.
[23] Arduino Uno. http://arduino.cc/en/Main/arduinoBoardUno.
[24] Arduino Guide. http://arduino.cc/en/Guide/Introduction.
[25] Bluetooth SIG. Specification of the bluetooth system, 2001.

