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Abstract. Reputation systems aggregate mutual feedback of interacting
peers into a “reputation” metric for each participant. This is then available
to prospective service “requesters” (clients) for the purpose of evaluation
and subsequent selection of potential service “providers” (servers). For
a reputation framework to be effective, it is paramount for both the in-
dividual feedback and the reputation storage mechanisms to be trusted
and able to deal with faulty behavior of participants such as “ballot stuff-
ing” (un-earned positive feedback) and “bad-mouthing” (incorrect nega-
tive feedback). While, in human-driven (e.g. Ebay) environments, these
issues are dealt with by hired personnel, on a case by case basis, in auto-
mated environments, this ad-hoc manner of handling is likely not accept-
able. Stronger, secure mechanisms of trust are required.
In this paper we propose a solution for securing reputation mechanisms in
computing markets and grids where servers offer and clients demand com-
pute services. We introduce threshold witnessing, a mechanism in which a
minimal set of “witnesses” provide service interaction feedback and sign
associated ratings for the interacting parties. This endows traditional feed-
back rating with trust while handling both “ballot-stuffing” and “bad-
mouthing” attacks. Witnessing relies on a challenge-response protocol in
which servers provide verifiable computation execution proofs. An added
benefit is an assurance of computation result correctness.
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1 Introduction
In a reputation system, satisfaction feedback provided by interacting entities is
aggregated and used in the construction of a “reputation” metric of each partici-
pant. This metric is then to be used by prospective service clients in evaluating and
selecting among potential servers. One example of a reputation system is eBay. In
a typical scenario, following a sale, the buyer provides a satisfaction rating which
is then stored in a publicly available reputation profile of the seller which can be
used by prospective buyers to decide whether to buy from this particular seller.

In the case of eBay, interacting entities are human. One could envision lever-
aging a paradigm of interaction feedback reputation in fully automated digital
interactions, for example in distributed servicing systems. The promise of such rep-
utation frameworks [3, 5, 6, 11, 12, 14, 21] in distributed computing environments
is to offer a low cost, scalable method for assessing reliability (and possibly level
of trust) of connected system entities.
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In such environments however, centralized trust is a costly, often un-realistic
proposal. A distributed trusted alternative for reputation management is required.
Moreover, in hostile settings, malicious behavior can interfere significantly with
the ability to provide and manage interaction and service ratings (possibly with
the purpose of inflicting reputation damage to the competition or the system it-
self). Nevertheless, these are the type of frameworks where a reputation paradigm
would yield the most benefits, not only because of its scalability and virtually
zero-cost, but mainly because of its potential to provide feedback to security and
resource managers, essential in ad-hoc and faulty (possibly malicious) settings.

This is why, for a reputation framework to be effective, it is paramount for
both the individual feedback and the reputation storage mechanisms to be trusted
and able to deal with faulty behavior of participants such as “ballot stuffing”
(un-earned positive feedback) and “bad-mouthing” (incorrect negative feedback).
While, in human-driven (e.g. Ebay) environments, these issues are dealt with by
an army of hired individuals, on a case by case basis, in automated environments,
this ad-hoc manner of handling is likely not acceptable. Stronger, secure mech-
anisms of trust are required. Additionally, especially in open, dynamic, possibly
hostile environments, of concern are truly malicious system entities (e.g., intrud-
ers), mounting denial of service attacks.

In this paper we introduce a solution for secure reputation management in a
distributed computing environment. We believe this to be a first required step in
the integration of reputation as a trusted automated assessment mechanism in
distributed computing environments. Our solution is composed of two major ele-
ments: a proof of computation method (an extension of the “ringer” concept first
introduced in [10]) and a “threshold witnessing” mechanism. In the witnessing
protocol, a set of sufficient “witnesses” are gathered to witness service interac-
tions and subsequently sign a document certifying a new associated rating. The
witnessing is coupled with a mechanism of computation proofs which provides
an (arbitrary high) confidence level that a particular set of computations was
indeed performed by a given party. This is required in witnessing to make sure
that ratings are in fact correlated to the quality of the result. The main contri-
butions of this paper include: (i) the proposal and definition of the problem of
securing rating correctness and their associated semantics (computational result
correctness) in distributed computing markets, (ii) a solution proposing the use
of threshold witnessing and computation proofs to produce securely signed rat-
ings and (iii) the evaluation thereof, (iv) an extension to the ringers concept for
arbitrary computations and an analysis of its applicability.

The paper is structured as follows. Section 2 introduces the main system and
adversary models as well as some of the basic construction primitives. Section
3 overviews, details and analyzes our solution and its building blocks. Section 4
surveys related work and Section 5 concludes.

2 Model and Tools

2.1 Communication and System Model

Let n be the average total number of uniquely identified (e.g., through a numeric
identifier Id(X))) processes or participants in the system at any given point in



time. Due to the potentially dynamic nature of real systems (with participants
joining and leaving continuously), defining n precisely is inherently hard.

The purpose of the system is to provide a market for computations. Partici-
pants can export CPU cycles that others can use in exchange for payment. We
assume that there exists a finite set of computation “services”, {f1, ..., fs} and
each participant has the ability to perform them, albeit at different costs. Let Al-
ice be a service provider and Bob a service requester. In such a computing market,
as part of a service request, Bob specifies an amount he is willing to pay for it as
well as additional quality of result constraints, e.g., time bounds. Bob’s aim is to
maximize the investment, for a set of computations it needs to perform.

For any interaction between Alice (Id(Alice) = A) and Bob (Id(Bob) = B), let
there be a unique session identifier, e.g., a composition of the current time and
the identities of the two parties, sid(A, B, time) = H(A; B; time). We will use the
notation sid when there is no ambiguity. Let f be a service provided, f :

�
→ � ,

and let (xi)i∈[1,a] ∈
�

be the computation inputs.

As it is not central to our contribution, to model costs and execution times
we are proposing the following intuitive model: (i) for a computation f and a
given input data set {x1, ..., xa} the amount of associated CPU instructions NI(f)
required to compute it, can be determined easily (for simplicity we assume that
for each xi, this amount is the same); for every system participant X both (ii) the
execution time per CPU instruction TPI(X) and (iii) the charged cost per time unit
CPT(X) are publicly known and easily accessible to every other participant While
this model can be made more complex, we believe it fits best the current scope.
Thus, for a given function or computation load, any entity can determine every
other’s entity associated cost and execution time. This is an important element
in the process of matching a particular service request (including time and cost
constraints) to the most appropriate service provider (see Section 3.1).

There exists a universal time authority that provides the current absolute time
value (e.g., UTC) with a certain precision εt to every participating entity. There
exists a PKI [15], that can distribute certified public keys to all participants. This
enables them to sign and check signatures of others. We propose to use this same
infrastructure to also provide verifiable threshold signatures [18]. More precisely,
we use it to distribute to each participant a certified master secret key share and
the master public key. The key shares are set up such that any c + 1 participants
can sign an arbitrary message with the master secret key, and the correctness of
any signature share can be verified by anyone in a non-interactive manner (c or
less participants cannot perform the same operation, see Section 2.4).

We assume that the underlying distributed communication layer offers the
following types of communication channels: (i) secure point to point between
two entities (cost: ψpp), (ii) secure multicast within a group (cost per multicast:
ψmcast) and (iii) broadcast (cost per broadcast: ψbcast). The multicast channel
allows group creation and message delivery to group members. Additionally, as
the main focus of this paper is not on the communication layer we assume that
there exist join/leave protocols for participating entities that enable them to both
become aware of and communicate with the other entities in the system. The only
extension that our solution proposes is to the join protocol, to enable a particular
entity to gain knowledge of existing reputation values (see Section 3.1).



Let the ratings be numeric in our system. We say that a reputation is a trust-
worthy enclosure of a rating. More precisely, the reputation of participant X is
rep(X) = SMK(Id(X), rating(X), T), where SMK(M) denotes message M signed with
the secret master key, rating(X) ∈ [0, 1] is X’s rating (a higher value is a better
rating), and T is the creation time of the reputation. Additionally, upon receiving
the results r of an interaction of X performed in time ∆T, let ρ() be any function
that aggregates r and ∆T with the previous rating of X, to create the new rating
of X; the new rating value of X becomes ratingnew(X) = ρ(ratingold(X), r, ∆T).

2.2 The Adversary

Let c be the upper bound on the number of active faulty participants at any point
in time (e.g., no more than c participants can collude, crash or act dishonestly).
The mechanisms proposed here are always secure but most efficient when the
size of the input data sets a is truly large. More specifically, when on average,
a > (2c+ 1) holds for (most of) the computation jobs in the system. To bring
efficiency even for smaller input sets, one could envision a mechanism for gathering
multiple inputs over a time period, until a critical mass is attained and only then
submit them for execution.

The role of reputation ratings is then to allow service requesters to choose
service providers with a good history. Of concern here are scenarios of ballot
stuffing and bad-mouthing [7] in which participants collude in order to build fake
pasts. In ballot stuffing un-earned good reputation ratings are provided to service
providers by colluding clients. The main purpose of bad-mouthing is to provide
incorrect negative ratings, possibly for the competition.

2.3 Ringers

The ringers concept was first introduced in [10]. The main idea behind it is to
(cheaply) provide computation proofs for the evaluation of a certain hypothesis
over a large input set where only certain items will match (e.g., interesting patterns
in [1]). Here we propose ringers in a distributed computing market context where
a computation needs to be performed on all the data items in the input set.

In their initial version ringers work as follows. The first underlying assumption
is that the computations in the system are non-invertible one-way. A service client
wishes to get one of these computations h computed for a set of inputs, {x1, ..., xa}
by a service provider. To perform the computation it first computes a challenge
(“ringer”) to be submitted along with the inputs to the service provider. This
challenge is exactly the result of applying h to one of the inputs h(xt), where
t ∈ [1, a] is not known to the service provider. The implicit assumption here is that
computing h for the entire input set is significantly more expensive than for a single
item in the input (e.g, if a is large enough). The client then submits {x1, ..., xa}
and h(xt) to the service provider. In addition to the normal computation results
{h(x1), ..., h(xa)} the service provider is expected to return also (as a computation
proof) the correct value for t. Due to the non-invertible nature of h, a correct
return provides a confidence of actual computation over the set of inputs.

The main power of the ringers lies in the assumed non-invertibility of the
performed computations. To directly fake a proof (and produce a “valid” t), the
service provider would have to either: (i) act honest and perform a computations
or (ii) cheat and perform only 0 ≤ w < a computations hoping it finds the ringer



in the process and, if not, guess. The probability to succeed in cheating is pos-
itively correlated to the amount of work performed; over the course of multiple
interactions it can be forced to arbitrary small values. For more details see Section
3.3. The ringer construct (for arbitrary computations) in this paper is obtained by
“wrapping” results in one-way, random crypto-hash functions. In other words, we
lift the assumption of one-way non-invertibility for the computations in the sys-
tem; h can be any function. The ringer challenge submitted to the service provider
becomes now H(h(xt)) where H() is a one-way non-invertible cryptographic hash
function. Thus, instead of the assumed one-wayness of computations, our exten-
sion puts the main power of ringers in the non-invertibility and randomness of
the cryptographic hash deployed. Additionally, we extend the adversary model to
also consider “guessing” (see Section 3.2).

2.4 Verifiable Threshold Signatures

The model of verifiable threshold signatures [18] consists of a set of n participants
and a trusted dealer. Since we already assume the existence of a decentralized
trusted infrastructure providing public key distribution, see Section 2.1, we can
use it to play the part of the trusted dealer. Initially, the trusted infrastructure
needs to generate a master public key PK, a verification key VK, n shares of a master
secret key SKi:1..n and n verification keys VKi:1..n. Each participant Pi receives
PK, VK and its shares SKi and VKi, each certified by the trusted infrastructure.
Additional secret and verification key shares can easily be generated later on, for
the use of new participants that join the system. This is not generating a high
overhead, requiring only the computation of a polynomial and an exponentiation
[18]. The signature verification algorithm takes a message, its signature and the
master key PK and determines if the signature is correct. The signature share
verification algorithm takes a message, PK, VK, the signature share of process Pi,
and VKi and determines if the signature share is valid. The share combination
algorithm takes as input a message, c + 1 valid signature shares for the message
and PK and produces a valid signature of the message. Any c processes cannot
collude and produce a valid signature of a message.

3 Solution
At an overview level our initial solution proceeds as follows (Figure 1 (a)). Bob
wishes to get a given computation f executed over a set of input data items
{x1, ..., xa}, in exchange for payment. Both the payment and the amount of time
he is willing to wait for service completion are upper-bounded. In an initial wit-
ness selection phase (step 1, Section 3.1), Bob selects a set of 2c+ 1 computation
“witnesses” Wi (this provides a threshold-secure way of avoiding illicit ratings).
He then sends to all of them (via multicast) a service request including f, the
inputs, the payment and target execution time upper bounds (step 2). The wit-
nesses then perform a distributed server selection process (step 3, Section 3.1),
at the end of which the least-costly, best-reputation, available server is selected
to perform f for Bob. As the adversary model in Section 2.2 guarantees a ma-
jority of the witnesses are honest and non-colluding, this process is to complete
successfully. Let the selected server be “Alice”. Note that the selection of Alice is
not under the control of Bob. Alice is provided f and the input data set and the
witnesses then initiate the process of threshold witnessing (step 4, Section 3.1)
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Fig. 1. (a) Solution Overview (b) Building Block: Witnessing Protocol

by sending (each in turn) a set of challenge ringers to Alice. Upon executing the
computation Alice completes the witnessing process by returning the execution
proofs associated with the challenge ringers to the witnesses, as well as the actual
computation results back to Bob (step 5). Finally, depending on the proof cor-
rectness, the witnesses sign (using verifiable threshold signatures, Section 2.4) a
new rating (a combination of the previous rating and “good” if correct proofs or
“bad” otherwise) for Alice and distribute (broadcast) it (step 6, Section 3.1). If
the rating does not change it is not distributed.

3.1 Building Blocks

Rating Storage Management.

Let us start by first exploring the way the actual reputation information is stored.
As the rating of each participant is ultimately a numeric value, in itself it can be
easily altered. Our solution for introducing trust in reputation values is to allow
their creation only if a certain number of participants agree on that reputation.
For this, the reputation of participant X is stored signed with the secret master
key, as SMK(Id(X), rating(X), T). Then, we use verifiable threshold signatures (see
Section 2.4) to allow no less than c + 1 participants to sign a reputation with the
secret master key. Thus, the reputation of a participant can be created or changed
only if at least c + 1 participants agree on the participant’s new rating.

Every participant stores the most recent reputation for every other partici-
pant together with: the time it takes the participant to execute an instruction,
time per instruction (TPI), and the amount charged by the participant per unit
of its processor time, cost per time (CPT) (see Section 2.1). Both values are con-
stant and signed with the participant’s private key before distribution.

In order for participants to store consistent reputations, we need each joining
participant to acquire the current view of the system, and a change in one’s repu-
tation to be advertised to all. It is thus straightforward to see that at most c par-
ticipants may have an incorrect view of the system, since we assume that at most c
participants are faulty. A joining participant has then to make its presence known
through a broadcast message, followed by the transfer of reputations knowledge of
at least 2c + 1 participants, already part of the system. Specifically, when a partic-
ipant X receives the broadcast message of a new participant, J, it stores J’s identity
under an initial, pre-agreed upon rating. X then retrieves the current time, T, and
if the selection test is positive, that is, H(Id(X), T) mod dn/(2c+ 1 + e)e = 0, X



sends back to J its collection of reputations. J waits to receive c + 1 replies and
then for each participant only stores the most recent reputation. Since we assume
that the current time can be retrieved with error εt, each participant uses only the
most significant bits of T in order to perform the selection test with the same value
of T. e is a positive integer, used to ensure that at least 2c + 1 of the participants
will be selected.

Witness Selection.

Before exporting a job, service client B first needs to select 2c + 1 witnesses,
ensuring that even if c participants are faulty, a majority, at least c + 1, will
be honest and alive for the duration of the protocol. Since B already stores the
reputations of all the participants, the witnesses can be elected randomly among
them. This corresponds to step 1 in Figure 1 (a). In step 2, B creates a multicast
channel for the witnesses and sends the (signed) job description: f, the set of
input values (xi)i∈[1,a], the maximum time B is willing to wait for job completion,
∆Tmax, and the maximum amount B is willing to pay for the computation, Cmax,
a signed digest SB(H(f, (xi)i∈[1,a], ∆Tmax, Cmax)), along with a certificate containing
B’s public key, meant to prevent integrity attacks.

Server Selection.

The 2c + 1 witnesses need to first select the most suitable service provider (see
step 3 in Figure 1 (a)). This is performed subject to the following constraints.
First, all participants X for which TPI(X) × NI(f)× a is greater than ∆Tmax, or
TPI(X) × CPT(X)× NI(f) × a is greater than Cmax, are not further considered. Sec-
ondly, the participant with the best reputation among the remaining ones is se-
lected. Let that participant be Alice (A). Even with c faulty witnesses, no less
than c + 1 witnesses will select A.

Next, A is added to the witness multicast group. The first witness in a cer-
tain order [4] (“the leader”) multicasts the job description received from B. If
the other witnesses receive this message, they know that A also received it, and
stop; else, after waiting a small amount of time, the next witness in the ordering
assumes leadership and sends this multicast. This continues until the witnesses
hear the expected job description. In Section 3.1 we show that in fact the number
of expected multicasts is exactly one.

Threshold Witnessing.

The 4th step in Figure 1 (a), detailed in Figure 1 (b), depicts the service wit-
nessing operation. This operation requires the 2c + 1 witnesses to first export B’s
computation to A, then verify the accuracy of the computation performed by A,
and based on the quality of the service performed, compute and sign the new rat-
ing of A. The essence of the service witnessing operation is the usage of ringers (see
Section 2.3). We now show how the threshold witnessing operation is performed
securely by 2c + 1 external witnesses.

Ringer Generation. Each witness Wj:1..2c+1 selects one (or a small random num-
ber of values – we illustrate here the case with one single value for clarity) random
value xz from the input set (xi)i∈[1,a] specified by B in the job description and
computes a ringer rj = H(f(xz)). Based on the identities of A and B and the current
time, Wj generates a unique session identifier, sid, (see Section 2.1). The purpose
of sid is to prevent replay attacks by introducing a freshness element. Then Wj



computes SWj(H(Id(Wj), sid, rj)), and sends its identifier, Id(Wj), sid, the ringer
rj, together with the signed digest and Wj’s public key certificate to A (step 1 in
Figure 1 (b)). When A receives such a message, it verifies Wj’s signature. Note that
even though A knows rj and A may collude with a subset of the witnesses, none
of them actually knows the xz value generated by an honest witness. Moreover,
since at most c witnesses can be malicious, at least c + 1 witnesses will be honest
and generate good ones; these are enough to ensure A’s cooperation.

A waits to receive 2c + 1 valid messages for the same session identifier, sid. If,
within a given time frame, starting with the receipt of the first ringer, A receives
less than c + 1 such messages, it ignores the job received. Otherwise, A sends a
multicast message to all the witnesses that participated. The message contains a
concatenation of all the signed ringers received. The witnesses that receive this
message, inquire the remaining witnesses for their ringers. If the remaining wit-
nesses, less than c + 1 of them, show that they chose a different service provider,
A should perform the job with only the initial ringers (necessarily from honest
witnesses). If the remaining witnesses reply with ringers, A should perform the
job using all ringers. This mechanism is required to avoid a case of malicious wit-
nesses mounting a denial of service attack in which they don’t send out ringers but
claim Alice to be malicious. It also handles the case of a malicious Alice claiming
to have not received all the ringers.

Revealing the Ringers. Next, A performs the computation and reveals the
input values xz hidden in the 2c + 1 ringers. It creates a single message contain-
ing Swj(H(Id(Wj), sid, rj)) and SA(H(Id(A), sid, z)), for j = 1..2c+ 1. The message
also contains the results of the computation, f(x1), .., f(xa), along with its signed
digest. Note that the first signed digest was sent by Wj, and is used to prove the
value of the ringer rj. A then sends this message on the witness multicast channel
(step 2 in Figure 1 (b)). Each witness Wj verifies the correctness of only its own
ringer, that is, rj = H(f(xz)). The multicast of A is meant to prevent a witness
from falsely claiming that A did not send back a correct answer.

If any witness Wj discovers that A did not send back xz or that rj 6= H(f(xz)),
Wj sends a multicast message to all the other witnesses revealing this fact. The
other witnesses are able to verify the claim by computing the correct answer to
Wj’s ringer and compare it with the answer sent back by Alice (received during
A’s previous multicast, step 3 in Figure 1 (b)). This acts as the proof that A did
not perform the entire computation. A negative rating is then issued.

Signature Generation. Based on A’s current rating, rating(A), the returned
results of the current computation, r, and the time elapsed since A received the
job description, ∆T, each witness Wj is able to compute A’s new rating using the
ρ function (see Section 2.1). In general, if A is caught cheating, either by not per-
forming the entire computation or performing it slower than advertised, its rating
will decrease, otherwise, it will increase. Each Wj then generates a verifiable signa-
ture share of A’s new reputation, SshrWj

(Id(A), ρ(rating(A), r, ∆T), T), where T is the

current time and SshrWj
(M) denotes message M signed with Wj’s share of the secret

master key. Then Wj sends this value, along with its certified verification key VKj
(see Section 2.4) and A’s new rating in clear, to all the other witnesses, using the
group’s multicast channel. Each witness waits to receive c correct signature shares
for the same new reputation of A as the one generated by itself. As mentioned



in Section 2.4, any participant can verify the validity of a signature share by us-
ing the master public key, master verification key and the verification key of the
share, VKj. Additionally, since no more than c witnesses are malicious, an honest
witness will receive at least c such correct signature shares, ensuring progress.
Since c + 1 different and correct signature shares are enough to generate a valid
signature (see Section 2.4), each witness is able to generate the signed new rating
of A locally.

Reputation Distribution.

In the last stage of the protocol, depicted in steps 5 and 6 in Figure 1 (a), the
results of the computation are returned to B and the new reputation of A is dis-
tributed. Since we assume that A can only be lazy, if A performed the computation,
it will send the correct results to B. The witnesses know each other’s identities
and a global ordering of the group members is assumed [4]. The first witness is
in charge of sending the new reputation of A on the broadcast channel to all the
participants in the system. If during this broadcast the remaining witnesses hear
the expected reputation, they stop. However, if the next witness (in the given
group order) does not hear the expected reputation in a given time frame, it will
itself send A’s new reputation on the broadcast channel. This process goes on until
all the witnesses are satisfied with the distributed reputation. Note that a witness
cannot simply send an incorrect reputation since it will be easily detected, as it
would need a fresh timestamp and to be signed with the master key, that is, by
at least c + 1 honest witnesses.

An optimization to this solution is to simply ignore un-changing ratings. In
other words, if, because of the current interaction, the rating of A doesn’t change no
additional action is performed (no rating distribution). This reduces the number
of broadcasts to a fraction of c

n
(Section 3.3).

Punishing Malicious Witnesses. If a witness acts maliciously at any stage
(e.g., as part of rating signing or distribution) due to its nature, the witnessing
scheme allows for immediate counter-measures upon detection. One such measure
could be simply flagging the identity of the particular witness and effectively re-
moving it from the system. Also, because the only actual effect of such malicious
behavior is just a likely minor slow-down of the protocol (e.g., waiting for the nec-
essary amount of honest signature shares) but sure detection (!), this constitutes
a significant cooperation incentive for witnesses. In other words, the likelihood of
a witness committing such “suicidal” action can be considered minor. Thus any
rational witness should act honest in the witnessing protocol, for its own survival
benefit. As a result, e.g., the expected number of transmissions required for rating
distribution is exactly 1.

3.2 Attacks and Improvements

Cheating and Laziness. Is bad-mouthing still possible? Due to the nature of the
solution, issuing a bad rating requires a secured proof of non-compliance by Alice,
that all witnesses agree with. This would only happen if at least one of them will
show its ringer H(f(xz)) for which Alice did not respond correctly with z. But, if
Alice responded correctly, all messages are signed, ringers are non-invertible, and
at most c of the witnesses are malicious, this is not possible.

Furthermore, a straight-forward ballot-stuffing attack, where clients create and
duplicate simple compute jobs in order to artificially increase the ratings of pre-



ferred servers, is thwarted through the indirection introduced by the witnessing
layer. For each job requested by a client, a server is chosen by 2c + 1 witnesses,
containing an honest majority.

Next, we ask what are the chances of malicious entities to succeed in cheating in
the witnessing phase? In other words, is lazy behavior (resulting in ballot-stuffing)
possible and how likely? An analysis on the power of ringers can be found in [10].
Without duplicating these results, here we are exploring a scenario not considered
in [10]. Let us start by asking the question: For r ringers, what is the probability
of “finding” (i.e., finding the rank of the corresponding input item in the item set)
x of them by performing only w < a work? In other words, what is the likelihood
of cheating by simply finding the ringers after doing less work than required.

This can be modeled as a classical sampling experiment without replacement
(retrieving x black balls out of w draws from a bowl of (a− r) white and r black

balls): P0(a, w, r, x) =
(rx)×(a−r

w−x
)

(aw)
where x ∈ [max(0, w+ r− a), min(r, w)]. Addition-

ally, we know the success probability of simple guessing of r ringers without
performing any work is (choosing r out of a items): P1(a, r) = 1

(ar)
A rational mali-

cious Alice could deploy the following cheating strategy: do w < a work (compute
only w results) and, if not all the ringers are discovered (possible if also r < w),
simply guess the remaining ones. It can be shown that the success probability of
such a strategy is:

P(w, r) =

min(r,w)∑

i=max(0,w+r−a)

[P0(a, w, r, i) × P1(a− w, r− i)] =
1

(ar)

min(r,w)∑

i=max(0,w+r−a)

(wi)

To better understand what this means we depicted the behavior of P(w, r) in
Figure 2 for b = 20. It can be seen that (e.g., for r = 5) a significant amount of
work (e.g., w > 3

4
b) needs to be performed to achieve even a 33% success proba-

bility. Figure 2 (b) illustrates the inverse dependency on the number of ringers r
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Fig. 2. The behavior of P(w, r) (a = 20). (a) 3-dimensional view, (b) inverse dependency
of r to w (2-dimensional cut through (a)). (c) The behavior of P(w, r). A 2-dimensional
cut through (a) showing the relationship between P(w, r) and the amount of performed
work w, plotted against the base case with one ringer (r = 1). (d) P′(w, r, f) and P(w, r)
plotted for r = 5, f = 3.

for specific values of performed work. The more challenges are presented to Alice,
the less its probability of getting away with less work.

Maybe more importantly, Figure 2 (c) illustrates the inverse exponential de-
pendency on the number of ringers r for specific values of performed work. The



more ringers are presented to Alice, the less its probability of getting away with
less work. Over multiple interactions, lazy behavior is not sustainable as the prob-
ability of getting caught increases exponentially and the cheating success prob-
ability converges to 0:

∏v

i=1
(P(wi)) → 0, where wi < a is the work performed in

each of the interactions.
Fake Ringers. There exists an important issue of concern with the above scheme.
Because Alice knows the number of ringers, once she finds all of them she can
simply stop working. One simple yet effective solution to this problem is to add
“fake” ringers to the set of submitted ringers. In other words, instead of the wit-
nesses computing and sending a total of (r + f) correct ringers, they will compute
just r correct ones and then simply generate f > 0 random ringer-like items and
add them to the set. This has the additional benefit of reducing computation
costs. Now Alice has to respond correctly only to the non-fake ones. Because she
does not know which ones and how many of the challenges are fake, she is forced
to execute all the queries to guarantee a correct answer (she cannot stop after it
finds all the correct ones, as it doesn’t know which ones and how many they are).

Introducing the fake ringers solves the issue of Alice being able to simply stop
after discovering all the ringers. It also offers higher security assurances. Let us
explore why 3.

Let us first assess the impact of fake ringers on the success probability of
Alice’s malicious behavior P′(w, r, f). To succeed, at each step, she needs to first
guess exactly what the value of f is. If she is off even by one and replies with a
value to a fake ringer (instead of stating it is fake), the witnesses know that Alice
did not compute f() over all the inputs. It can be shown that:

P′(w, r, f) =
1

(ar)

min(r,w)∑

i=max(0,w+r−a)

[
(wi)

min(a− w, max(1, r+ f− i))
]

where 1

min(a−w,max(1,r+f−i)) is the probability of Alice guessing the value of r (and

f) after performing w work and discovering i correct ringers. This is so because
Alice knows that clearly (r− i) ≤ (a− w) (number of remaining ringers cannot
exceed number of remaining un-considered inputs). Then, there are (r− i) + f

remaining possible values for f, only one of which is correct. The max() needs to
be considered if f = 0 and Alice discovers all r ringers: it knows then that f = 0.
In Figure 2 (d) the evolution of P′(w, r, f) is plotted against P(w, r) for r = 5,
f = 3. Only 3 additional fake ringers (no additional cost) significantly decrease
the cheating success probability of Alice (e.g., for w = 17 from 60% to 20%).

To function properly, deploying fake ringers requires the assumption that their
number is random for every witnessing procedure and cannot be predicted by
Alice. Now we are faced with solving the following problem: the witnesses have
to make sure that, through-out time, both r and f are secret, randomly chosen
and not correlated to each other or with their previous values.

But how can this be achieved in an environment where up to c of the witnesses
could be malicious? If all the witnesses somehow agree upon values for r and f,
nothing is stopping the malicious ones to leak these very values to Alice, thus

3 This discussion is a summary of results by Sion et. al. in [19] where this very issue is
discussed in a different context (assurances for query execution over outsourced data).



defeating the advantages of fake ringers all-together. To solve this, we propose the
following adjustment to the ringer generation mechanism. Instead of each witness
generating exactly a single correct ringer, let it generate a random, secret number
of correct and incorrect ringers. As a majority of witnesses are non-malicious,
even if the rest of the witnesses are not cooperating, this mechanism will result in
a random value for the (total) number of fake and real ringers, neither of which
are known to, or under the control of any one party.

If c is large enough it may warrant the argument that, due to the law of large
numbers, this will result, on average, in 50% true ringers and 50% false ones. This
might make it easier for Alice to approximate the moment when it can simply
stop and guess f. In that case, the following alternative can be deployed: each
witness performs a separate witnessing round with Alice, (using its own random
numbers of true and fake ringers). After initially performing all the computations
(just once) for each such round, Alice will simply respond to the ringers challenges
only. Let us also note that this alternative can be put into place at no additional
cost, by having Alice not discard the computed results until all the witnesses have
been satisfied. No extra computations will be required in each witnessing round.

3.3 Analysis

Communication Overhead. Let us analyze the incurred communication costs.
These are composed of: (i) the initial request multicast, in the witnessing stage, (ii)
one multicast with the service request (witnesses to Alice), (iii) 2c + 1 unicasts
with ringers (each witness to Alice), (iv) one multicast with proofs (Alice to
witnesses), (v) 2c+ 1 multicasts with threshold signature shares (within witnesses
groups) and (vi) one final broadcast with the actual signed reputation:

ψcomm = (1 + 1 + 1 + (2c + 1))ψmcast + (2c + 1)ψpp + ψbcast

If we normalize with respect to the cost of the point to point communication,
(i.e., ψpp = 1):

ψcomm = (2c + 4)ψmcast + ψbcast + (2c + 1)

To understand this better, let us assume a simple multicast mechanism that yields
an average cost (number of messages) of ψmcast(x) = βmcastx (for a group of x

members) where βmcast ∈ (0, 1):

ψcomm = βmcast(2c + 2)(2c + 4) + (2c + 1) + ψbcast

Now, if we consider that a traditional scenario deploying reputation ratings (with-
out witnessing and computation proofs) would only pay the communication cost
of distributing the ratings (ψbcast), the actual total incurred overhead for securing
the rating mechanism is

∆ψcomm = βmcast(2c + 2)(2c+ 4) + (2c + 1)

Thus, the communication overhead is of an O(c2) complexity order.
Let us now consider the optimization proposed in Section 3.1, namely, to not

distribute un-changing ratings. Because we assume a maximum of c faulty parties,
the ratio of negatively rated interactions is roughly c

n
. Thus, intuitively, on average



the ratio of interactions that result in “changing” ratings can also be considered
roughly c

n
. This results in an additional reduction of communication costs, as for

(1− c
n
) of the interactions, stages (v) and (vi) are not necessary:

∆ψcomm = βmcast(2c + 2)(2c + 1)
c

n
+ 2βmcast(2c + 2) + (2c + 1)

Now the communication overhead is reduced to an order of O( c
3

n
).

Computation Overhead. The computation overhead includes: (i) the genera-
tion of 2c + 1 ringers by the witnesses, (ii) the computation of a hashes over each
function output, by Alice and (iii) the generation of (2c + 1) threshold signature
shares for the new ratings by the witnesses. Let ωf be the cost of computing f

for one of the inputs. We have

∆ωcomputation = (2c + 1 + a)(ωhash + ωf) + (2c + 1)ωs

where ωhash is the cost of hashing a function output (when generating a ringer)
and ωs is the cost of generating a threshold signature share.

Let us assess the complexity of computations as a function of a, the number
of input items in the request data set. For this purpose ωf = 1. Also, because
ratings are numeric and of small size, and the hashes are likely computed over
finite amounts of data, in the current scope, to assess overhead dependency of a,
we are considering both ωs and ωhash to be constants. The computation overheads
are thus of an order of O(c + a); because a > c, this becomes O(a). If we apply the
optimization proposed in Section 3.1 (i.e., not to distribute un-changing ratings)
these costs are further reduced with 2c+ 1. This would still leave the computation
complexity at O(a), with smaller constants however.

4 Related Work
Due to the initial “social” dimension associated with reputation research, the es-
sential issue of securing reputation mechanisms in automated environments has
only recently [2, 6–8, 12, 16, 17] been identified. Resnick et al [16] provide an ex-
cellent overview of the problems of providing trust in such systems. Damiani et
al. [6] extend Gnutella to include reputations not only for participants but also
for individual resources. The paper describes several interesting attacks, such as
pseudospoofing, ID stealth or shilling, and proposes a protocol that is secure
against them. An extension of the security analysis for such attacks performed by
multiple, different, colluding participants would make for interesting future work.

Dellarocas [7] uses anonymity coupled with cluster filtering to separate fair
and unfair ratings, to weight ratings, and prevent attacks initiated both by ser-
vice providers and service users. The paper focuses on a centralized marketplace,
hence, a distributed implementation of anonymity, of computation and storage
of reputations remains to be investigated. Kamvar et al. [12] propose the use
of eigenvalues to estimate the trust between any two participants. The solution
distributes the computation and storage of the trust values onto third parties.
Since the input values for the trust computation process can be on untrusted
hosts, correctness verification mechanism for the stored information are required.
Otherwise, the whole computation may be compromised.

Aberer and Despotovic [2] construct reputations based on the (often reason-
able) assumption that most participants are honest and therefore only negative



feedback needs to be made public. In addition, the complaints are stored in a
decentralized manner. It is important however to handle bad-mouthing attacks
based on the creation of fake complaints for competition. Selcuk et al. [17] use
trust vectors, distrust ratings and credibility ratings to identify malicious partic-
ipants and content. These efforts lack an exploration of an adversary model that
includes powerful, synchronized attackers.

In related research, Naor and Pinkas [13] introduce a mechanism providing
secure interaction “counts” between servers and clients in web interactions; the
main goal is to allow servers to securely count client interactions, while preventing
count inflation or lack of client cooperation. This is an important problem to
consider when web hosting services are provided for payment.

Maybe closest to our research in terms of the actual strong security goals is
the research by Dewan and Dasgupta [8]. There they propose a mechanism that
allows each participant to store its own reputation, as a signed chain of past
transactions. Drawbacks of such an approach include the inability to deal directly
with attacks such as ballot stuffing or bad mouthing, nor with the issue of rating
semantics and execution correctness. Their solution however is certainly elegant
and space efficient when applicable. An additional difficulty however also resides
in securely storing the record of the last transaction in a reputation chain.

In the area of verifiable distributed computations we already discussed work
by Golle and Mironov [10]. Szada et al. [20] extend their solution to optimization
functions, Monte Carlo simulations and sequential function applications. In the
work of Du et al. [9], the service provider commits to the computed values using a
Merkle tree. Then, the service provider is queried on the values computed for sev-
eral sample inputs. The commitment prevents the service provider from changing
the output of its computations.

5 Conclusions

In this work we have studied the problem of providing a secure reputation infras-
tructure for distributed computations. Our solution uses ringers [10] to construct
computation correctness proofs. We also constrain the generation and modifi-
cation of reputations, by requiring at least one non-faulty external observer to
agree with the new reputation. We achieve this by employing a novel threshold
witnessing mechanism, coupled with threshold signatures. We analyze the com-
munication and computation overheads, as well as the level of security achieved.
We believe that in a significant number of scenarios the goal of achieving secure
trust among participants is as important as the applicability of the system, and
thus, well worth the overheads. In future work we plan on building a proof of con-
cept of the proposed mechanisms and exploring their capability in bootstrapping
and maintaining trust. We also plan to increase the level of security provided by
our solution against actively malicious service providers.

References
1. SETI @ Home. Online at http://setiathome.ssl.berkeley.edu.

2. Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-peer information
system. In Proceedings of the tenth international conference on Information and
knowledge management, pages 310–317. ACM Press, 2001.



3. Beulah Alunkal, Ivana Veljkovic, Gregor von Laszewski, and Kaizar Aminand.
Reputation-based Grid Resource Selection. In Proceedings of the Workshop on Adap-
tive Grid Middleware, New Orleans, LA, September 2003.

4. Y. Amira, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlossnagle andJ.
Schultz, J. Stanton, and G. Tsudik. Secure group communication in asynchronous
networks with failures: Integration and experiments. In The 20th IEEE International
Conference on Distributed Computing Systems, pages 330–343, 2000.

5. Mao Chen and Jaswinder Pal Singh. Computing and using reputations for internet
ratings. In Proceedings of the 3rd ACM conference on Electronic Commerce, pages
154–162. ACM Press, 2001.

6. Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi, Pierangela Sama-
rati, and Fabio Violante. A reputation-based approach for choosing reliable resources
in peer-to-peer networks. In Proceedings of the 9th ACM conference on Computer
and communications security, pages 207–216. ACM Press, 2002.

7. Chrysanthos Dellarocas. Immunizing online reputation reporting systems against
unfair ratings and discriminatory behavior. In Proceedings of the 2nd ACM confer-
ence on Electronic commerce, pages 150–157. ACM Press, 2000.

8. Prashant Dewan and Partha Dasgupta. Securing reputation data in peer-to-peer
networks. In Proceedings of International Conference on Parallel and Distributed
Computing and Systems PDCS, 2004.

9. Wenliang Du, Jing Jia, Manish Mangal, and Mummoorthy Murugesan. Uncheatable
grid computing. In Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’04), pages 4–11. IEEE Computer Society, 2004.

10. Philippe Golle and Ilya Mironov. Uncheatable distributed computations. In Pro-
ceedings of the 2001 Conference on Topics in Cryptology, pages 425–440. Springer-
Verlag, 2001.

11. Audun Josang and Roslan Ismail. The beta reputation system. In Proceedings of
the 15th Bled Electronic Commerce Conference, 2002.

12. Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust
algorithm for reputation management in p2p networks. In WWW, 2003.

13. Moni Naor and Benny Pinkas. Secure and efficient metering. Lecture Notes in
Computer Science, 1403:576–576, 1998.

14. T.G. Papaioannou and G.D. Stamoulis. Effective use of reputation in peer-to-peer
environments. In Proceedings of IEEE International Symposium on Cluster Com-
puting and the Grid CCGrid, pages 259–268, 2004.

15. Michael K. Reiter, Matthew K. Franklin, John B. Lacy, and Rebecca N. Wright. The
Ω key management service. In Proceedings of the 3rd ACM conference on Computer
and communications security, pages 38–47. ACM Press, 1996.

16. Paul Resnick, Richard Zeckhauser, Eric Friedman, and Ko Kuwabara. Reputation
systems. Communications of the ACM, 2000.

17. A.A. Selcuk, E. Uzun, and M.R. Pariente. A reputation-based trust management
system for p2p networks. In Proceedings of the IEEE International Symposium on
Cluster Computing and the Grid CCGrid, pages 251–258, 2004.

18. Victor Shoup. Practical threshold signatures. In Proceedings of Eurocrypt, 2000.
19. Radu Sion. Query execution assurance for outsourced databases. In Proceedings of

the Very Large Databases Conference VLDB, 2005.
20. D. Szajda, B. Lawson, and J. Owen. Hardening functions for large-scale distributed

computations. In Proceedings of IEEE Symposium on Security and Privacy, pages
216–224, 2003.

21. Li Xiong and Ling Liu. A reputation-based trust model for peer-to-peer ecommerce
communities [extended abstract]. In Proceedings of the 4th ACM conference on
Electronic commerce, pages 228–229. ACM Press, 2003.


