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Abstract—In this paper, we present techniques for synchro-
nizing nodes that periodically broadcast content and presence
updates to co-located nodes over an ad-hoc network, where nodes
may exhibit Byzantine malicious behavior. We first propose an
algorithm for synchronizing the periodic transmissions of all
the nodes in an attacker-free multi-hop network. This allows
nodes to save battery power by switching off their network cards
without missing updates from their neighbors. We then introduce
a suite of spoofing attacks and show that they are able to disrupt
synchronization and destabilize the network even when launched
by a single attacker in large, multi-hop networks. Finally, we
devise a rating based algorithm that rates neighbors based on
the consistency of their behavior. By favoring well-behaved nodes
in the synchronization process, we show that we can address
the issue of Byzantine malicious behavior very effectively. Our
evaluation shows that the algorithms are computationally efficient
and, for the setup considered, extend the device lifetime by 30%
over an always-on Wi-Fi scenario. Moreover, in the presence
of attacks, our rating based algorithm quickly stabilizes the
synchronization process and reduces the number of lost updates
by 85%.

I. INTRODUCTION

The global penetration of mobile phones that have rich
media and wireless networking capabilities has ushered in
a new paradigm in mobile computing with new emerging
social behaviors. New enabling technologies now allow users
to search, locate, download and share dynamically created
content with friends and family from their mobile devices.
With ad-hoc networking capabilities in mobile devices, we
are beginning to see the above trend shift from wide-area
communities of users to dense local-area social situations (e.g.
coffee shops, train stations, football fields etc.) [1], [2], [3].
Such a shift presents opportunities to design proximity aware
systems that deliver novel social experiences. For example,
fans watching a football game can automatically share pictures
taken on their mobile phones with each other, while comment-
ing/rating pictures being taken around them.

Designing systems for highly dynamic ad-hoc environments
presents several interesting research challenges, including the
difficult problem of providing scalable, energy efficient pres-
ence and content updates. To keep information fresh in such
environments, the distribution mechanisms have to focus on
frequent, small meta-data updates rather than large infrequent
payloads, which could also be a cause of significant battery
drain from a mobile device. One approach to address this issue
is to synchronize transmission times of all participating nodes

in the system. Transmission synchronization presents energy
saving opportunities through dynamic power management of
the network interface. That is, nodes can switch off their
wireless interfaces between transmissions. However, in uncon-
trolled ad-hoc environments a single malicious user can easily
disrupt network stability and synchronization, affecting either
the nodes’ power savings or their ability to receive updates
from their neighbors. Therefore, designing synchronization
algorithms that are resilient to Byzantine behavior of nodes
is of paramount importance.

The synchronization problem can be stated as follows:
Given a set of nodes participating in an ad-hoc network, where
each node has a duty cycle consisting of active and sleep
intervals and uses a multicast presence distribution protocol
for periodically exchanging updates, design an algorithm to
achieve synchronized transmission times between all the nodes
of the network. While this approach does not force nodes to
synchronize their duty cycle schedules, it may require them to
shortly and periodically wake up during their sleep intervals in
order to send their updates and receive those of their neighbors.
The difficulty of the problem lies in the fact that nodes
have arbitrary join/leave times, flexible initial periods between
transmissions and unsynchronized clocks. Since nodes may
become co-located only for short intervals, we are particularly
interested in algorithms that achieve synchronization in a
timely manner and efficiently handle network updates.

Our Randomized Future Peak Detection algorithm (FPDR),
introduced in Section IV solves the above problem. FPDR is
built on a Content and Presence Multicast Protocol (CPMP) [4]
(described in Section II). CPMP is a simple mechanism for
nodes to send updates, including the relative time of their next
transmission, to their neighbors. FPDR enables each node to
decide its next transmission time based only on the CPMP
packets received from its neighbors. For each packet received,
a node uses only information that can be inferred directly from
it (e.g., arrival time and relative time of next transmission).
While its minimalistic trust in the data contained in updates
shields FPDR from a large class of malicious attacks, it
also makes it vulnerable to spoofing attacks. Our second
contribution then consists of devising three spoofing attack
classes, where the perpetrator spoofs a large number of device
identifiers and sends packets on their behalf. Our simulations
from Section VII show that for networks of a few tens of
nodes, a single attacker implementing either of these attacks



can keep the entire network not only from synchronizing, but
also from reaching a stable synchronization point.

We address FPDR’s vulnerabilities by designing a Rating
Based Algorithm, RBA, presented in Section V. In RBA,
nodes locally maintain rating values for each of their neigh-
bors, based on the stability (and predictability) of their be-
havior. The use of ratings enables nodes to discard from
their synchronization process, updates received from unreliable
or unstable sources. We prove that this approach effectively
thwarts the tower and dispersion attacks. Moreover, we present
several attacks targeted specifically against rating based syn-
chronization mechanisms and show that RBA efficiently pre-
vents or isolates their effects.

Our implementation evaluation on a Motorola A910 phone
shows that our protocols are both power and computation
efficient. By using a simple duty cycle protocol for turning
off the Wi-Fi card, we can achieve more than a 30% device
lifetime extension. Moreover, the overhead for processing a
packet (either sent or received) is around 25 ps. Our simulation
results show that in the absence of attackers, FPDR can
synchronize large and dense networks in reasonable time (e.g.,
8 minutes for a 40 node network). Moreover, even in the
presence of attacks, RBA is not only able to quickly stabilize
the synchronization process (e.g., less than 9 minutes for a
100 node network), but also to reduce the update loss rate to
approximately 15%.

II. SYSTEM MODEL
A. Update Dissemination

We build our synchronization algorithms on top of a
content/presence dissemination protocol called Content and
Presence Multicast Protocol (CPMP). A full description of
CPMP can be found in [4]. The CPMP protocol was designed
specifically to support social content consumption experiences
in ad-hoc wireless local area network environments. The
protocol describes a messaging format that allows nodes to
disseminate content and/or presence updates, such as content
currently being consumed and content that is being sought
for future consumption at each node. CPMP messages are
transmitted periodically to inform nearby devices of updated
content presence information using IP multicast. Each CPMP
message also includes a field (T'x) that specifies the number
of seconds in which to expect a new CPMP message from that
node. Then, a CPMP header has the following format

CPMP,device_identifier, Ty.

By transmitting CPMP messages at approximately the same
time CPMP messages are expected, an implementation can
avoid permanently powering on the wireless LAN radio, which
can result in energy savings.

B. Assumptions

Each device X has a unique identifier, Id(X), which can be
either the device IP or MAC address. We assume devices can
form ad hoc networks, where connectivity is dictated by the
ability of devices to establish connections with other devices in

their vicinity. We are interested mainly in multi-hop networks,
since the single-hop scenario has substantially easier solutions.

Initially, each node keeps its network interface active for an
interval of length ¢,, followed by k sleep intervals, each of
the same length ¢,. The value of k offers an obvious tradeoff
between the resulting battery savings and the time it takes to
discover new neighbors. Since nodes are not synchronized,
they start their active and sleep intervals independently of
each other. Nodes hear any CPMP broadcast made during
the interval ¢, and miss them when the network interface
is in sleep mode. Each node wakes up at every interval
(T'x = t,) and broadcasts its own CPMP update. This behavior
is repeated for the entire life of the node. Note that T'x does not
need to be equal to ¢,. However, by imposing this constraint,
we can ensure that during each active interval a node will
receive all the updates sent by nodes within transmission
range. The algorithms that we propose in this paper work even
if Tx > t,, however, nodes may take longer to synchronize.

An important assumption that we avoid to make, is that
devices have public key certificates certified by a trusted
authority. While such an assumption would simplify our
solutions, it would also significantly impact performance. If
nodes were to authenticate their CPMP updates and given
that new nodes may join at any time, a node would need to
include its certificate in each update. This operation would be
both expensive in terms of communication and computation
(signature verification) overhead.

Finally, we do not consider physical-layer attacks such as
jamming, but instead confine ourselves to attacks occurring
above the MAC layer. Previous work addressing jamming
attacks can be found in [5], [6], [7].

C. Attacker Model

We assume nodes may be corrupted and exhibit Byzantine
behavior. Such nodes may run modified code and behave in
an unpredictable manner. We assume that an attacker can
spoof any device identifier. This can be easily performed since
knowledge of device identifiers is not a verifiable operation.
As mentioned before, we chose this alternative since using
cryptographic primitives for verification is an expensive alter-
native, in itself prone to denial-of-service attacks.

IIT1. OUR APPROACH

Let us first define several notions that we will use through-
out the paper.

Definition 3.1: (Stable State) A network is said to be in
a stable state if the Tx value of each node remains unchanged
over time.

Definition 3.2: (Synchronization) Two nodes are said to
be synchronized if (i) they are within transmission range and
(i) the times of their CPMP update transmissions coincide.
A cluster of synchronization is a sub-set of the nodes of the
network that transmit at the same time. A network is said to
be synchronized if it has reached a stable state, with a single
cluster of synchronization.

For example the black (blue) nodes in in Figure 1 are part
of cluster C; and the grey (red) nodes are part of cluster Cs.



Fig. 1. Example node N (center) with 12 neighbors. Dotted lines represent
bidirectional communication links. Nodes shown in black (blue in color) will
transmit at the same time, as will nodes shown in grey (red). White nodes
will each transmit in a different time slot.
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Fig. 2. Example slotArray structure maintained by node N of Figure 1.

Time Discretization: We divide each interval (active or
sleep) into s sub-intervals, called slots, of length t; = t,/s.
Each node N maintains an array slotArray of size s, where
each entry in the array stores a list of packets. Let N’s current
active interval, of length t¢,, be its 7T'th interval. The next
interval, the T+ 1st, will be a sleep interval. At the beginning
of the T'th interval, N resets all entries of slot Array. During
the active interval, IV listens on its network interface, collects
all the packets received and places them in the slotArray
structure in the following manner. For each packet pkt received
from a neighbor during the T'th interval, N computes the
neighbor’s next transmission time, as promised by the T'x field
of the packet and then stores the packet in the slot of index

SlOt(pkt) = ((tcurr + TX)%ta)/tS

of slotArray, where t.y.» is the time when the packet was
received. Figure 2 shows the slotArray structure of node
N, for a possible transmission pattern of the nodes shown in
Figure 1. Considering values of ¢, = 20 and s = 10 and that
the blue nodes send at time t.,,.» = 38 with a T'x = 16, their
packets will be stored in slot Array on the entry corresponding
to slot (54%20)/2 = 7.

At the end of the active interval, N decides the time of
its next transmission based on the information carried by the
packets in slotArray. The exact procedure for performing
this operation defines the algorithm’s performance. In the
following sections we instantiate two different ways for nodes
to choose the slot with which to synchronize. We use the ex-
pression “node N synchronizes with slot s” to denote the fact
that N’s transmissions will occur in the sth slot of following
intervals (nodes send updates once per active/sleep interval).
By synchronizing with slot s, node N implicitly synchronizes
its transmission with all its neighbors that have also chosen
slot s for transmission. Note that nodes only synchronize their
transmission times (slots), not their active/sleep schedules.

Al]g(orithm 1 Generic Counting Algorithm. The in-
voked getStartActiveInt and getStartSleepInt meth-
ods provide the time when the next ACTIVE or SLEEP
interval begins. The methods initState, setT X and
processPackets will be instantiated in the following
sections.

1.0bject implementation GENERIC;

inQ : InputQueue; #packet recv queue
pktList : Pkt[]; #list of packets

Ty : int; itime to next transmission
nextSendCPMP : int; abs next transmission time
teurr ¢ 1n0t; ffcurrent time

TN NU NS

s : int; #number of slots per interval
t, @ int; period length
ts : int; duration of a slot

lb.slotArray : Slot[s];
11.state : int;

12. Operation main()
13.  while (true) do

#packet organizer
#node state

14. teurr := getCurrentTime();

15. if(tcurr = getStartActivelInt()) then
16. initState();

17. state := ACTIVE;

18. else if(tcur = getStartSleepInt()) then
19. setTX();

20. state := SLEEP;

21. else if(state = ACTIVE) then

22. processPackets(teurr);

23, fi

24.  od

Generic Algorithm: Algorithm 1 shows the pseudo-code
of the high-level behavior of a node. The main method (lines
12-24) consists of an infinite loop (line 13). The behavior is
dictated by the current time (fcyrr, line 14). If the node is
at the beginning of an active interval (line 15) it calls the
initState method to initialize the slotArray structure (line
16) and switches its state to ACTIVE. If an active interval has
just completed and the node enters a sleep interval (line 18),
the setT X method is called to process the slot Array structure
and decide the node’s future transmission time (line 19). The
node then switches to a SLEEP state (line 20). If none of these
conditions is satisfied, but the node is in an ACTIVE state (line
21), the algorithm calls the method processPackets in order
to retrieve all the packets received at time t.,. and update
its slotArray structure (line 22). We will later instantiate the
initState, setT' X and processPackets methods for actual
solutions.

IV. RANDOMIZED FUTURE PEAK DETECTION ALGORITHM

In this section we propose a lightweight solution for
synchronizing all the nodes in a multi-hop network,
in the absence of Byzantine failures. The algorithm is
called randomized future peak detection (FPDR). As previ-
ously mentioned, at the end of each active interval, a node
running FPDR has to choose one of the s slots of each
interval and synchronize with it. The chosen slot is called the
winner slot.

Our strategy is the following. Let total =
5o |slotArray[i]] be the total number of packets



Algorithm 2 Randomized Future Peak Detection Algorithm
(FPDR). The method getAllPackets of the input queue in@
r(laturns all the packets received in the past ¢, seconds (current
slot).

1.0bject implementation FPDR extends GENERIC;
. total: int; #number packets received
. rand: int; #pseudo — random generator

2
3
4. Operation initState()
5. for (i := 0;i < nSlots;i+ +) do
6. slotArray[i] := new pkt[];od
7 total := 0;

8. end

9. Operation setTX()

10.  if(total! = 0) then

11. sel := rand.nextInt() % total + 1;

12. for (i := 0;i < nSlots;i+ +) do

13. if(slotArray[i].size() < sel) then
14. sel := sel — slotArray[i].size();
15. else winnerSlot := i;

16. fi

17. od

18. if(winnerSlot! = nextSendCPMP % t,) then
19. Tx := winnerSlot;

%(1) nextSendCPMP := t yrr + Tx;

22,

23.end

24. Operation processPackets(tcyr : int)

25. pktlist:= inQ.getAllPackets(ts);

26. for (i :=0;i < pktList.size();i+ +) do

27. index := ( teurr + pktList i].Tx) % ta)/ts;
28. slotArray[index].add(pktList[i]);

29. total := total + 1;

30. od

31.end

received by the node during the active interval. Then, the
node will synchronize with a slot x € 1..s with probability
Pz = |slotArray[z]|/total. For instance, using the example
shown in Figure 1, node N will choose the 7th slot (chosen
by 5 of its neighbors) for its transmission with probability
5/12 and the 4th slot (chosen by 3 of its neighbors) with
probability 3/12.

Algorithm 2 presents the details of the FPDR algorithm,
which instantiates the generic solution shown in Algorithm 1.
The initState method (lines 4-8), executed at the beginning of
each active interval, resets each entry of the slotArray struc-
ture and also the total variable, which will count the number of
packets received in that interval. The processPackets method
(lines 24-31) is executed periodically and uses the network
interface’s input queue in() to retrieve all the packets received
before its call time (line 25). For each such packet, the node
computes the next transmission time as promised by the T'x
field of the packet. It then determines the slot corresponding to
that future time (line 27) and adds it to the entry in slotArray
corresponding to that slot (line 28). The total variable is also
incremented, to account for this packet (line 29).

The setT' X method (lines 9-23), executed at the end of each
active interval, decides the node’s winner slot. This is done by
randomly picking a selector (sel) value in the interval 1..total
(line 11) and using it to choose the winner slot in a weighted
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Fig. 3. Example network whose histogram is showed in Figure 4.

probabilistic fashion (lines 12-17). setT'X then synchronizes
the node with the winner slot, by setting the node’s T'x
value to the winnerSlot value (line 19) and correspondingly
updates the time of the node’s next transmission (line 20). The
nextSendC PM P value encodes the absolute time when the
node will transmit its next CPMP update. To save space, the
actual transmission is not shown in pseudo-code.

Example: Figure 4 shows a possible outcome of the
FPDR algorithm for the network illustrated in Figure 3. Each
node starts with an active interval. In this example, the duty
cycle of each node consists of an active interval followed by
a sleep interval. Initially, after each interval, a node sends a
CPMP packet advertising the time of its next transmission. In
this example, node B is the first to start and later to send a
CPMP packet. The packet, received by both A and C' (D is
not yet active) makes both nodes synchronize with B. The first
synchronized transmission of A, B and C takes place at time
T(A, B,C). Later, when node D receives two updates, from
B and C, it places them in the same slot and synchronizes with
them. The first synchronized transmission of the entire network
takes place during the next interval (at time T'(A, B, C, D)).

synchroni zed

;

Sync with B
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Fig. 4. Histogram of a four node network shown in Figure 3. Each node has
a duty cycle consisting of one active period (up zones) and one sleep period
(down zones). Each active period of a node has a list of slots (shown above
up zones). Node transmissions are shown with black and grey (red) arrows.

Joining/leaving nodes: When a node joins a synchro-
nized network, it becomes synchronized with the network
after its first active interval. This is because all the packets
it receives are placed in the same slot. Leaving nodes are
straightforward to handle since the remaining nodes will have
one less node to sync with.



A. Resilience to Attacks

In FPDR nodes do not propagate information, thus prevent-
ing malicious nodes from spreading inaccurate data. However,
nodes running FPDR are unable to verify the authenticity of
the received packets’ senders. This weakness can be exploited
by the following spoofing attacks. Let T be the current interval
and let My(T),.., M,,,(T) be a set of device identifiers to
be spoofed by an attacker M during this interval. Then, let
pkt;(T) = (M;(T),t;,Tx,) denote the CPMP packet sent at
time ¢; (within interval T') by M, as if coming from spoofed
node M;(T), with a value Tx = T,.

Tower Attack: M creates the packets pkt;(T) such that
s =t; +Tx, = t; +Tx;, i,j = l..m. Effectively, all the
neighbors of M will believe that the next transmission of the
nodes My (T), .., M,,(T) will coincide and will likely attempt
to synchronize with them. However, during the next interval,
M can spoof another set of device identifiers and construct
their CPMP updates such that they will all be placed in another
slot s’ # s. The number of packets from M that are placed
in the same slot is m, called the height of the tower.

Dispersion Attack: Let I(T) = {L(T),..,I,(T)} be
a set of time slots during interval T', where p is called the
attack’s dispersion factor. Let |I;(T')| denote the number of
packets that are sent in slot I;(T'). M generates packets
pkt;(T) such that slot(pkt;(T)) € I(T), i = 1l.n and
|Ii(T)| = o, for all j =1..p. 0 = n/p is called the height of
the attack.

Effects of Tower and Dispersion Attacks: The tower
and dispersion attacks have the purpose of artificially increas-
ing the number of packets received by neighbors of M. In
FPDR, a node has a higher chance of choosing as winner a
slot with more packets in it. Then, by constantly changing the
slots where the updates from spoofed devices will be placed,
an attacker influences its neighbors to change their transmis-
sion slots. As our simulations from Section VII show, this
behavior quickly propagates to the entire network, preventing
not only its synchronization, but also the stabilization of the
synchronization process.

V. A RATING BASED ALGORITHM

In the following we propose a Rating Based Algorithm
(RBA) that addresses the issues previously exposed. RBA
requires each node to build statistics of its neighbors’ trans-
mission stability: a neighbor that consistently sends its CPMP
updates in the same slot is considered more stable than a node
that regularly changes slots. In effect, each node is building a
rating value for each neighbor. Ratings are used only locally
and are not propagated to neighbors. After an active interval,
a node will synchronize with the slot in which the packet from
the highest rated neighbor has been placed. Thus, neighbors
with lower ratings (e.g., newly seen or unstable) will have little
chance to influence the synchronization process.

The ratings are built as follows. When a node A receives
a packet from a neighbor B, if the packet’s slot coincides
with the slot of B’s previous transmission, B’s rating is
incremented. If not, B’s rating is dropped to 0. Note that B’s

rating is set to O also if B misses one transmission or if B is
a newly seen neighbor.

In order to prevent impersonation attacks, we also extend the
CPMP protocol to include a minimal overhead authentication
information. While this additional data does not prove that
the node is who it claims to be, it allows its neighbors to
make a reasoning of the form: “this packet was sent by the
same device that has sent a similar packet one interval ago”.
We achieve this by using “hash chain” constructs. That is,
when a node sends a first CPMP packet, it includes a H"(R)
field, which denotes the unique R value hashed n times.
When the node sends a second packet, it includes the value
H"~1(R). This value allows its neighbors to verify that only
the same node could have sent the second packet. This process
is continued until the node reaches its (n + 1)th transmission,
when, along with the cleartext R value it also includes a new
hash chain, H"(R'), for a fresh R'. A CPMP packet for the
kth transmission of node N has the following format

CPMP, Id(N), Tx, H**(R).

Our Rating Based Algorithm, RBA, whose pseudocode
is shown in Algorithm 3, implements these mechanisms in
the following manner. For each neighbor B from which a
packet has been received in the past active interval, a node
A maintains B’s last transmission slot (the HT hashtable of
line 2), B’s rating value (stored in the r hashtable from line 3)
and B’s previously sent hash value (stored in the h hashtable
from line 4).

Node A processes each packet received in the
processPackets method of Algorithm 3 (lines 5-21)
by first looking up the sender’s identifier, B, in its HT
structure (line 11). If the identifier has not been seen before,
the rating of B, rp, is set to 0 (line 17). Then, the packet’s
slot index, computed on line 9, is inserted in the HT
hashtable (line 18) and the packet’s hash is stored the h
hashtable (line 19).

If the identifier has been seen before (line 11), A verifies
that the hash contained in the packet comes indeed from the
same B that has sent a packet before (line 12). If the check
does not verify, A drops the packet. Otherwise, if the packet’s
slot index coincides with B’s previous transmission slot (line
14), B’s rating is incremented (line 15). If however, B has
sent the packet in a different slot, its rating drops to O (line
16).

Similar to FPDR, B’s packet is placed in the slotArray
entry corresponding to the packet’s slot (lines 9-10). At the
end of the active interval, the setT' X method (lines 22-36)
processes the slotArray structure in order to find the slot
containing the packet sent by the sender with the highest rating
value (lines 24-31). Node A will then synchronize with this
slot (lines 32-35). We can now prove the following result.

Theorem 5.1: RBA thwarts the tower and dispersion at-
tacks.

Proof: (Sketch) Due to space constraints, we consider
only the tower attack. Since the dispersion attack can be
viewed as a generalization of the tower attack, our reasoning



Algorithm 3 Rating Based Algorithm.

1.0bject implementation RBA extends GENERIC;
2. HT: int||; #history table

3. r:int[]; #rating table

4. h:LargeInt[]; #hash list

5. Operation processPackets(tcyrr : int)
6. pktList := inQ.getAllPackets(ts);
7
8
9

for (i := 0;i < pktList.size();i+ +) do
sdr := pktList[i].getSender();
index := (&tculrr + pktList[i].Tx) % ta)/ts;

10. slotArray[index|.add(pktList[i]);
11. if (HT.contains(sdr) = true) then
12. if (hash(pktList[i].getHash()) | = h[sdr])
13. break; fi

14. if (HT[sdr] = index) then

15. r[sdr] := r[sdr] + 1;

16. else r[sdr]:=0; fi

17. else r[sdr] = 0; fi

18. HT[sdr] := index;

19. h[sdr] := pktList[i].getHash();
20. od

21.end

22. Operation setTX(tcyrr : int)
23,  maxR:=0;
24,  for (i:=0;i < nSlots;i+ +) do

25. for (j := 0;j < slotArray[i].size();j + +) do
26. sdr := slotArray[i][j].getSender();
27. if (r[sdr] > maxR) then

28. winnerSlot := i;

29. maxR := r[sdr];

30. fi

31. od od

32.  if(winnerSlot! = nextSendCPMP % t,) then
33, Tx := winnerSlot;

34, nextSendCPMP := t.yrr + Tx;

3. fi

36.end

applies also to the dispersion attack. Let the ids spoofed by
a malicious node M during interval T' be M1(T), .., M, (T).
All the packets generated by M advertise the same future
transmission slot. Let Ny,.., N, be M’s neighbors. Let us
first consider the case where throughout the attack, M uses
the same ids, that is M;(T) = M;(T") for any two intervals
T # T'. Let those ids be denoted by M3, ..M,,. If the slot
chosen by M for the transmissions of My, .., M,,, changes at
most every c cycles, the ratings of M, ..M, will never exceed
c in the view of nodes N1, .., N,. Then, any N € {Ny,..N,}
that has a neighbor with a rating larger than ¢, will synchronize
with that neighbor. If N does not have any neighbor with
a rating larger than c, then following Mji,..M,, is the best
strategy.

Let us now consider the case where M;(T) # M;(T"),
that is, M changes the spoofed ids throughout the attack.
Note that as soon as a node stops receiving packets from
a neighbor, it removes its record from local storage, thus
effectively dropping that neighbor’s rating to 0. Thus, old
spoofed ids will be immediately discarded by M’s neighbors.
Let /; be the number of consecutive duty cycles in which
an id M; is used by the attacker. Then, the rating of M; is

r[M;] = min(c, ;). Thus, M has the following tradeoff, either
(i) use smaller c or /; values and become irrelevant during the
synchronization decision process of nodes Ny, .., N,, or (ii) use
larger ¢ and [; values and actually speed up the synchronization
process of its neighbors. [ |

We propose now several attacks targeted specifically against
rating based synchronization mechanisms and show RBA’s
defenses against them.

Circular Cascade Attack: M generates a fixed number
of device identifiers, My, .., M,. That is, M;(T) = M;(T"),
for i = 1..n and for all 1 < T, T’ time intervals. Let r[M;]
denote the rating of M; and S[M;] denote the slot where M;’s
updates are placed. W.L.o.g., let r[M1] > r[Ma] > .. > r[M,)].
Then, one active interval after detecting that a sufficient
number of its neighbors have synchronized with slot S[M]
(chosen by M, the best rated spoofed id), M changes M;’s
transmission slot. Since M ’s rating drops to 0, M’s neighbors
are forced to re-synchronize. Since 7[M>] may be sufficiently
high, some of M’s neighbors will synchronize with Ms, by
choosing slot S[M>] for their next transmission. M repeats
this process for the entire duration of the attack, effectively
cycling through ids M;, .., M,,. For more details on a possible
implementation of this attack see Section VII-C.

However, the following result shows that RBA isolates the
effects of the cascade attack.

Theorem 5.2: RBA isolates the circular cascade attack to
the neighbors of M.

Proof: Consider a case where node A has M and B
as neighbors, such that B is not within the communication
range of M. When, after r[M;] active intervals M changes
Mj’s transmission slot, node A is forced to re-synchronize
with another of its neighbors. Then, since in B’s view, A’s
reputation drops to 0, M’s behavior will not impact B. H

Framing Attack: M monitors the transmissions of its
neighbors and detects the one with the highest rating. Let
that node be N. At some point, M starts spoofing NN. This
attack can not only desynchronize the common neighbors of
M and N, but also frame N and ruin its reputation. It is easy
however to see that the hash-chains embedded in the CPMP
updates prevent this attack from affecting nodes running RBA.
Specifically, since for a given value v it is computationally
infeasible to find a value z such that H(x) = v, M is unable
to spoof the packets transmitted by other nodes.

Denial of Storage Attack: RBA stores a constant
amount of data for each id recently seen. Thus, an attacker
that sends many packets with different source ids may end up
exhausting the storage space of its neighbors, making them
drop statistics concerning valid nodes. However, this is not a
concern. First, in RBA, a node stores statistics only for ids that
have sent a packet in the last active interval. Second, the data
stored for a node id consists of 3 values: the transmission slot,
the rating and the hash value last received from that node. If
the hash takes 10 bytes and a node id takes as much as 100
bytes, with a storage capacity of 10MB (SD cards of 1GB are
available) a node can store statistics for at least a few tens of
thousands of node ids. If an attacker sends so many packets



during each interval, it is more likely to cause a jamming attack
(see [5], [6], [7] for defenses against jamming attacks).

VI. IMPLEMENTATION EVALUATION
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Fig. 5. Motorola A910 phone implementation evaluation. (a)Battery lifetime
with various Wi-Fi operation modes. The x label shows the time since the
beginning of the experiment and the y axis shows the percentage of battery
left. By using a duty cycle for the Wi-Fi card, we are able to extend the device
lifetime by almost 90 minutes, over the 290 minutes lifetime when the Wi-Fi
is always on. (b))MD5 and SHA1 hashing performance. For 16B blocks, both
MDS5 and SHAT1 are able to perform 40000 hashes per second. RBA requires
a single hash computation per packet sent/received.

We have evaluated the performance of our protocols on
Motorola Martinique (A910) phones , which are Linux/Java
phones with an ARM architecture. The A910 has an Intel
XScale-PXA27x processor, I0OMB RAM and is equipped with
an internal Wi-Fi card.

Battery Lifetime Extension: We have investigated the
battery savings enabled by the synchronization of transmission
times. For this, we have explored three Wi-Fi card usage
modes, namely, (a) always off, (b) always on and (c) duty
cycle. The duty cycle consists of a 5s active interval (Wi-
Fi on) followed by 3 sleep intervals, each 5s long. During
each sleep interval, the Wi-Fi card is off for 4s and on for 1
second, to allow the node to receive transmissions from neigh-
bors (collision resolution and accounting for unsynchronized
clocks). We have used a program running in the background,
using TAPI (Telephony API), to probe the remaining battery
level once a minute and print it to a local file. The A910 has
only 4 battery levels, of 100%, 50%, 20% and 5% of the fully
charged battery (1100 mAh). Figure 5(a) shows our findings.
While the maximum saving mode (“always-off”) extends the
battery life by around 54% (2 hours and a half), the duty cycle
behavior extends the battery lifetime by 30% (one hour and a
half) over the “always-on” behavior. The reason for the only
23% additional savings enabled by the always-off versus the
duty cycle mode, is that other phone components (e.g., CPU,
light) also consume battery power.

Crypto-Hash Evaluation: To understand the effects of
hashing (used to prevent framing attacks) on RBA’s computing
performance, we have evaluated it using OpenSSL, that we
ported to the arm architecture. We have tested two algorithms,
MD5 and SHALI, for block sizes ranging from 16 to 8192
bytes. In RBA, a node computes a hash-chain of length n to
last it for n transmission, thus, a single hash computation is
required per transmission. Moreover, when a node receives a

packet, it only needs to compute one hash and perform one
comparison.

Figure 5(b) shows the number of hashes per second per-
formed for a given block size. We have used the log scale
for the x axis. While both MD5 and SHA1 perform more
than 40000 hashes per second on 16B blocks, the number
decreases exponentially with the block size, reaching around
1000 hashes per second for 8192B blocks. However, for our
implementation we perform hashes on random values that are
less than 16B long. The time to compute and verify a hash is
then less than 25 us, which is quite reasonable.

VII. SIMULATION RESULTS

WhereFiSim: We designed and implemented a Java
based simulator called “WhereFiSim” for evaluating the per-
formance of our algorithms on larger scale networks that were
hard to realize in practice. We deployed nodes uniformly
at random in a 150x150 m? rectangular area. Each node,
modeled by a A910 phone, has a transmission range of 30m,
Each node has a start-up time. We simulated a worst-case
scenario, where nodes join in close sequence, of one node per
second. This is a worst case scenario since nodes start up un-
synced and none have synchronized by the time the last one
joins. Similar to the implementation evaluation, each node’s
duty cycle consists of one Ss active interval, followed by three
sleep intervals of 5s each. Each interval is split into 5 slots,
thus, the length of a slot is ¢; = 1s. Each simulation starts at
time zero.

A. FPDR Performance
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Fig. 6. FPDR performance. (a) Synchronization times for networks between
40 and 100 nodes. Each point is an average over 10 runs. The synchronization
delay increase is linear in the size of the network. 40 nodes synchronize in
roughly 8 minutes. (b) Evolution of synchronization cluster sizes on a network
of 50 nodes. While the whole network synchronizes in 10 minutes, many
nodes are much earlier synchronized with a large fraction of their neighbors.

(b)

In the first experiment we studied the synchronization
performance of FPDR in a scenario where all the nodes are
well-behaved. Figure 6(a) shows the time required by all the
nodes to synchronize their transmissions times, for networks
of 40 to 100 nodes. Each point shown is an average over 10
independent runs. The increase in the synchronization delay is
roughly linear, with less than 500 seconds (8 minutes) for net-
works of 40 nodes and less than 1400 seconds (23 minutes) for
networks of 100 nodes. This increase is due to larger network
degrees (higher node densities), since FPDR probabilistically



chooses one of the slots chosen by its neighbors. Note that for
networks of 100 nodes, all the nodes have joined after 100s.

Figure 6(b) magnifies one point of this experiment, showing
the evolution in time of the sizes of the clusters of synchro-
nization for one run of an experiment for a 50 node network.
By time 50s all the nodes have joined, by time 220s two of the
initial four clusters have merged and by time 280s there are
only 2 more clusters left. While the sizes of the two remaining
clusters are initially balanced, all the nodes synchronize by
time 640s.

B. Effects of Malicious Attacks
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Fig. 7. FPDR: average degree of synchronization and the number of nodes
synchronized with all their neighbors for the (a) tower and (b) dispersion
attacks. Even though at times many nodes are synchronized, it does not last.
Moreover, between successive measurements, the actual sets of synchronized
nodes change significantly.

To understand the effects of tower and dispersion attacks
on FPDR we have implemented an attack scenario consisting
of a single malicious node, M, deployed at the center of the
150 x 150m? area. We study a worst case scenario, where M
is the first to join the network (time Os). For both attacks, M
sends 10 packets during each of its active or sleep intervals.
Each packet has a different source header. During the tower
attack the packets are sent such that all will be placed in the
same slot by M’s neighbors. Thus, the tower height is 10.
During the dispersion attack, each packet has a random T'x
value, making the average dispersion factor p = 5 and the
height of the attack o = 2 (on average 2 packets in each slot).

We study the evolution in time of two metrics. The first
metric is called the average sync degree and represents the
average number of neighbors with whom a node is synchro-
nized. The second metric is the number of fully synced nodes,
that is, the nodes that are synchronized with all their neighbors.
Figure 7 show the effects of the tower and dispersion attacks
on these metrics, on a network of 50 nodes. The experiment is
run for 20000s and points reported are 2000s apart. The small
bars are the average sync degree and the longer bars are the
number of fully synced nodes. For both attacks, the number
of fully synced nodes varied significantly during a long run of
the attacks, between 3 and 33. The average sync degree varied
between 2.24 and 4.48, when the network’s degree (the average
number of neighbors per node) is 5.76. Thus, even though
at times FPDR is almost able to synchronize the network,
its success is only temporary. We have performed numerous,
longer than 20000s experiments and neither synchronization
nor stabilization was ever achieved.

C. RBA Resilience to Attacks

When studying RBA, we are interested in its behavior not
only under the above tower and dispersion attacks but also
under a cascade attack instance. In the implemented cascade
attack, the attacker uses a fixed list of 10 spoofed node ids and
generates their different ratings by having these nodes ”join”
in consecutive intervals. Each spoofed node sends in the same
slot for 10 consecutive cycles and then changes transmission
slot. Thus, at all times, exactly one of the spoofed ids has a
rating of 10, one has a rating of 9 and so on. However, during
each cycle, the leader id (rating of 10) changes its slot and
ends up with a rating of 0.

A node running RBA bases its synchronization decision on
the history of past transmissions of its neighbors. For this
reason, in our simulation, at start-up, each node runs FPDR,
while simultaneously building the neighbor transmission slot
statistics needed by RBA. Later, at a predefined time, the node
switches to RBA and uses the existing statistics to make more
reliable decisions. We tested this strategy by experimenting
with networks of 40 to 100 nodes running FPDR for 1000s,
then switching to RBA. A single node launches one of the
tower, dispersion or cascade attacks previously mentioned.
Figure 8(a) shows the average sync degree corresponding to
each attack for these networks and Figure 8(b) shows the
number of fully synced nodes. Each bar is an average over 10
random runs. In both figures, the first bar is for the dispersion
attack, the second bar is for the tower attack and the third
bar is for the cascade attack. The fourth bar in Figure 8(a)
is the network degree. For all attacks, both the average sync
degree and the number of completely synced nodes increase
linearly with the number of nodes in the network. For the
dispersion and tower attacks, the number of fully synced nodes
ranges between 55 and 65% of the total number of nodes in the
network and for the cascade attack this value ranges between
and 44% and 55%.

The average sync degree of nodes is very close to the
network’s degree, showing that on average, nodes are synchro-
nized with all but one or two of their neighbors. Specifically,
for a 100 node network, for the dispersion attack, the update
loss rate when the network is stable is less than 14% and for
the tower attack the loss rate is less then 16%. For the same
experiment, Figure 8(c) shows the time required by nodes
running RBA to reach a stable state of synchronization (see
Definition III). The first observation is that the increase in sta-
bilization time is roughly linear. However, RBA stabilizes the
synchronization process of 100 nodes in less than 120 seconds.
The second observation is that for all attacks (except for the 40
nodes network) RBA requires a similar synchronization time.

In the second experiment we study the effects of the size of
the history on RBA’s effectiveness against the above attacks
launched against a network of 100 nodes. For this we have
increased the time for building transmission statistics (when
nodes run FPDR) from 400 to 6000 seconds. Figure 9 shows
the average sync degree (the small bars) and the number
of fully synced nodes (the higher bars) for this experiment,
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each an average over the outcome of 10 experiment runs.
It is interesting to observe that a longer time for building
statistics before actually using them, offers no significant
advantage. Thus, using only 400 seconds for running FPDR
before switching to RBA is enough to synchronize nodes with
almost all their neighbors, effectively defending against tower,
dispersion and cascade attacks. Note that for a network of 100
nodes, less than 9 minutes are enough to bring the network
to a stable state (400 seconds can be used to gather statistics
and 120 seconds are enough for RBA to bring the network to
a stable state).

VIII. RELATED WORK

Medium Access Control in Sensor Networks: Perhaps
closest to our contribution is the research on the uses of
time slots for medium access control mechanisms, in reducing
battery consumption in sensor networks. Notably, the first
result in this direction is the slotted MAC protocol proposed
by Ye et al. [8]. In S-MAC, each node has an active/sleep duty
cycle. Nodes broadcast their schedules once every cycle and a
node can adopt a neighbor’s schedule, which is called “primary
schedule”. Nodes may form clusters, where all the nodes in a
cluster have the same primary schedule. Nodes that border on

multiple clusters are forced to monitor the schedules of all the
clusters they border. S-MAC was subsequently extended by T-
MAC [9], DSMAC [10] SCP-MAC [11] and MS-MAC [12].
While our approach is similar in the use of duty-cycles,
there are two notable differences. First, we do not attempt
to synchronize node schedules, but only the periodic, node
transmission times. Second, these protocols do not consider
the possibility of malicious, Byzantine faults.

In this respect, Lu et al. [13] have shown that the blind
trust of nodes running S-MAC (and all subsequent protocols)
in their neighbors’ schedules, can lead to simple attacks of dis-
astrous consequences. Moreover, they have proposed a simple,
threshold technique to address the proposed attacks. Our work
however is different also with respect to the vulnerability to
attacks. This is because our protocols nodes do not trust the
validity of the data contained in the packets received from
neighbors. Thus, none of our protocols (FPDR and RBA) is
vulnerable to the attacks proposed by Lu et al. [13].

Fault Tolerant Clock Synchronization: Lamport and
Melliar-Smith [14] were the first to study the problem of
achieving clock synchronization in the presence of Byzan-
tine faults. They proved that 3m + 1 clocks are enough to
synchronize the non-faulty clocks in the presence of m faults.
Solutions for fault tolerant clock synchronization in distributed
systems take either a software or a hardware approach. The
software approach is flexible and economical, but requires
additional messages. The hardware approach uses special
hardware at each node to achieve tight synchronization with
minimal time overhead. For an overview of solutions please
see [15]. Note however that our protocols do not rely on
synchronized clocks.

MANET Power Management: State-of-the-art research
on ad-hoc networks continues to search for ways to optimize
energy while minimizing the penalties incurred due to latency,
dropped packets and partitioned networks caused by induced
low-duty cycles on the network interface. In [16], the author
identifies three broad categories in which power management
for ad-hoc networks can be classified: rendezvous based



wakeup [17], [18], [19], [20], [21], [22], [23], [24] where
all nodes are synchronized to listen to the medium around
the same time, asynchronous wake-up [25], [26] where nodes
are not synchronized but the wakeup cycles are designed to
overlap, and booted wakeup [27], [28], [29] wherein a low-
power alternate radio (e.g. Bluetooth) is used to sense the
medium and boot up the wireless interface when required.
For our application requirements and specific ecosystem which
needed all nodes to receive updates frequently and reliably, the
scheduled rendezvous based wakeup approach was the obvious
choice.

Inadvertent Synchronization: Of particular relevance to
our contributions is also the work of Floyd and Jacobson [30],
who studied the process of inadvertent synchronization of
periodic routing messages. The authors investigated a network
of 20 nodes sending periodic messages at a time offset chosen
randomly between O and 120 seconds. They showed that the
nodes achieved transmission synchronization without external
interference, after almost 100000 seconds (27 hours) into
the experiment (smaller clusters were observed earlier, but
the largest cluster started developing at around 80000s). We
note that a similar behavior might also be observed in our
case. Since the time a node spends processing packets is
proportional to the number of packets received, a node will
tend to naturally synchronize with slots where it receives
more packets. However, while the synchronization of periodic
routing messages in the Internet can lead to congestion and
should be avoided, in our case synchronization is not only
desirable but it should occur quickly (order of minutes instead
of hours).

IX. CONCLUSION

In this paper we study the problem of synchronizing the
periodic transmissions of nodes in a multi-hop network, in
order to enable battery lifetime extensions without miss-
ing neighbor’s updates. We first propose a solution that is
lightweight and scalable, but vulnerable to attacks. We then
extend the solution to use node transmission stability as a
metric for synchronization and show that this technique is effi-
cient against a wide array of attack types. Our implementation
and simulations show that our protocols are computationally
inexpensive, provide significant battery savings, are scalable
and efficiently defend against attacks.
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