
1

Tipping Pennies? Privately.
Practical Anonymous Micropayments.

Bogdan Carbunar, Yao Chen, Radu Sion

Abstract—We design and analyze the firstpractical anonymous
payment mechanisms for network services. We start by reporting
on our experience with the implementation of a routing mi-
cropayment solution for Tor. We then propose micropayment
protocols of increasingly complex requirements for networked
services, such as p2p or cloud-hosted services.

The solutions are efficient, with bandwidth and latency over-
heads of under 4% and 0.9 ms respectively in the ORPay
implementation, provide full anonymity (for both payers and
payees), and support thousands of transactions per second.

I. I NTRODUCTION

Small online cash (or non-cash – e.g., quality of service –
tokens) transactions are becoming increasingly popular. Users
can download MP3 music from websites (e.g. iTunes store
[1]) for tens of pennies. Providing network services such as
routing [2] and P2P file sharing [3] feature sub-penny service
costs per routed unit or shared file. In such settings, simple
and efficient micropayment mechanisms are required with
lower overheads than existing payment infrastructures. This
is possible because – unlike in traditional e-cash protocols
– the minute nature of payments often allows for increased
efficiency under more relaxed guarantees – e.g., upper-capping
double-spending instead of full prevention.

In existing micropayment mechanisms,efficiencyand cor-
rectnesshave been two of the main driving design thrusts.
Often however micropayment schemes need to also provide
anonymity, a property that is quintessential for more traditional
e-cash but seems harder to achieve here due to efficiency
requirements. In e-cash, anonymity is provided by deploying
clever yet expensive cryptography or tailored secret splitting.
In micropayments however, achieving efficiency, correctness
and anonymity at the same time is challenging in no small
measure due to the apparently conflicting requirements. For
example, often to prevent double-spending (correctness),the
identity of payers is included in payments (loss of anonymity).
Double-spending could also be prevented by assuming an
online bank. However, assuming the existence of such an
always available bank is unreasonable in many distributed

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Bogdan Carbunar is with the School of Computing and Infor-
mation Sciences at Florida International University, Miami, FL. E-
mail: carbunar@gmail.com. Yao Chen and Radu Sion are with the
Stony Brook Computer Science Department, Stony Brook, NY. E-mail:
{yaochen,sion}@cs.stonybrook.edu.

This article extends an earlier version that has appeared inACM WPES
2009.

scenarios. Yet, while sacrificing some accuracy for efficiency
may seem reasonable, the cost of privacy is inestimable.

Here we introduce efficient, correct and anonymous micro-
payment mechanisms and proof of concept implementations
thereof. Users can make untraceable, anonymous micropay-
ments to each other and several micropayments can be aggre-
gated and cashed once. Illicit behavior such as overspending
is detected even when a tunable small amount of cash has
been overspent. In such a case only, perpetrator identities
are revealed. The mechanisms are practical with minimal
overheads and support thousands of transactions per second.

II. RELATED WORK

In [4], we introduced two micropayment mechanisms –
ORPay and PlusPay. In this paper, we extend the work with a
new protocol, CoinPay. CoinPay provides full anonymity and
overspending protection. However, unlike PlusPay, CoinPay
does not require the use of an anonymizer during communi-
cation with the bank. We further add formal definitions and
proofs for the three solutions.

Numerous micropayment schemes exist, including PayWord
[5], MicroMint [5], PayTree [6], Peppercorn [7], Millicent[8],
Netcard [9], MPTP [10], Lipton and Ostrovsky’s coin flipping-
based scheme [11],µ-iKP [12], PPay [3] and PAR [13]. Due
to space limitation, in the following we detail the ones most
related to our schemes.

We base our constructions on PayWord [5]. PayWord de-
ploys hash chains to model payment sessions and requires
only one signature per session. Payments can be aggregated.
To prevent overspending, the payer identity is included in the
payments, thus defeating anonymity. PayTree [6] is building
upon PayWord to further reduce the number of required
expensive crypto signatures by building a Merkle Tree to
efficiently authenticate multiple chains. While two of our
solutions may also use the idea of a Merkle tree over identity
shares to improve efficiency, we note that neither PayWord nor
PayTree attempt to achieve anonymity – this is the subject of
our paper. MicroMint [5] coins are hash-colliding values in
a model where the bank is assumed to have an advantage
in producing hash collisions over other parties. The solution
achieves its purpose to eliminate public key operations yet
requires the bank to keep track of all coins to prevent double
spending and coin forgery. This comes at the expense of
practicality and anonymity. Micropayments have also been
built on electronic lottery primitives. In Peppercorn [7] “one
cent” consists of a lottery ticket with a1% probability of
winning one dollar. This results in a reduction of bank-side

2

Protocol Anonymity Efficiency
PayWord, PayTree No Hash & amortized signature
MPTP, NetCard No Hash & amortized signature
Millicent, MicroMint No Hash only
Peppercorn No Signature required
Coin flipping No Signature & zero knowledge
Par Partially Signature required

TABLE I
KEY PROPERTIES OF MICROPAYMENT SOLUTIONS.

overheads at the expense of absolute fairness – payees get
paid “on average” and with no anonymity. Specific application-
oriented (non-anonymous) schemes have also been proposed.
In PPay [3] – targeted at P2P networks – the symmetric nature
of the inter-peer relationships (peers can be both payees and
payers) is deployed to reduce bank overhead.

Table I summarizes the key properties of several existing
micropayment schemes. For a detailed discussion on related
work please see [14], [4].

III. T OOLS

We require several cryptographic primitives: i) a standard
cryptographic hash, fast, collision resistant and preimage and
second preimage resistant (we use the notationH(x)), (ii)
a semantically secure [15] encryption scheme and (iii) an
unforgeable signature scheme. We further use the following
tools.
Anonymizers: Mix networks [16], [17], [18], [2]. consist of
serially composed servers, each transforming a set of input
messages into a permuted and re-encrypted set of output
elements. Mix networks satisfy the requirements to (i) operate
correctly, i.e., outputs correspond to a permutation of the
inputs and (ii) provide privacy, i.e., an observer is not able to
determine which input element corresponds to a given output
element better than guessing.
Blind Signatures: Blind signatures allow a user to obtain a
signature from a signer, where (i) the signer does not learn
information about the signed message –blindnessand (ii) the
user cannot obtain more thanl signatures afterl runs of the
signing protocol –unforgeability.
Threshold Secret Sharing (TSS):A (k, n) TSS schemes [19],
[20] ensureshiding: An adversary (provided with access to a
TSS oracle) controlling the choice of two valuesR0 andR1

and given less thank shares ofRb (b ∈R {0, 1}) can guess
the value ofb with probability only negligible higher than 1/2.
Commitment Schemes:A commitment scheme is a triple
(Gen,CMT,Open). Gen generates a public commitment
key, CMT produces a commitment value form and Open
takes as input a commitment value and additional information
and produces either a message or outputs error. A commitment
scheme is correct ifOpen(CMT (m)) = m. A commitment
scheme needs also providehiding andbinding properties. In-
formally, hiding implies that it is hard for any PPT adversary A
to generate two messages such thatA can distinguish between
their commitments. Binding implies that it is hard for any PPT
adversaryA to find two messages whose commitments are
equal (collision).

IV. M ODEL

Operation. Let B denote the “bank”, any authority that
manages payment accounts. LetU denote a payer andV

be a service payee (e.g., a vendor).B is trusted to correctly
withdraw and deposit payments upon valid requests.U and
V can be honest or malicious, by all means to break the
protocol. LetId(X) denote the unique identity associated with
participantX . Let U denote the set ofactivepayers – payers
with open accounts with a positive balance. We denote with
{M}k the encryption of messageM with key k. X ∈R D
is a random choice of valueX from domainD. The notation
PrX(Y) denotes the probability of eventY given inputX .
Adversary. We assume a computationally bounded PPT
adversaryA that may collude with or masquerade as any
number of vendors, payers and the bank. Specifically, in each
security property defined in the following,A is assumed to
control all parties except the party of concern in the property.

A. Anonymous Micropayments

We define ananonymous micropayment schemeto be a set
of protocolsµP = { BKGen, UKGen, Withdraw, InitChain,
Spend, Deposit, Verify}.
• BKGen(1k, params): Invoked by the bank to generate

public and private parameters.
• UKGen(1k, params): Invoked by each user to generate

public and private parameters.
• Withdraw (U(pkB, skU ,m), B(pkU , skB,m)): Allows U

to withdrawm coins from its account withB. If U ’s account
balance exceedsm, U obtains a payment tokenP of value
m, while the balance ofU with B contains m less coins.
Otherwise, Withdraw returns ERROR to both participants.
• InitChain (U(skU , P), V (skV , pkB)): Allows U to initial-

ize a micropayment chain, given a payment tokenP obtained
during a previous run of Withdraw. The output forU consists
of a micropayment chainµCHN or ERROR. The output for
V is either a commitmentCMT to the micropayment chain
or ERROR.
• Spend(U(skU , pkV , µCHN,P, ls), V (skV , pkB, CMT, ls)):

Protocol run after InitChain succeeds andls micro-coins
from µCHN have been spent byU to V . It allows U to
spend another micro-coin withV . The output for the payee
is one micro-coin or ERROR. The output for the payer is a
decremented balance or ERROR.
• Deposit(V (skV , pkB, D), B(pkV , skB)): Allows V to de-

posit a setD = (CMT,w, k) containingk micro-coins into
its bank account, using the last coinw and the commitment
CMT . If w is not valid orCMT does not verify, Deposit
outputs ERROR. If an overspending, either byV or by another
payer that transacted withV , is detected, Deposit returns the
identity of the overspender, the serial number of the overspent
micropayment chain and a proofP . Otherwise, the output for
the payee is an account balance increased withk.
• Verify (U, SN, P): Any user can run this protocol to verify

the overspending proofP against a userU , for a micropayment
with serial numberSN . If the proof reconstructsId(U), Verify
accepts the proof. Otherwise, it outputs ERROR.

Initially, each participant runs UKGen (or BKGen by the
bank) to generate its private and public parameters. Users call
Withdraw to obtain micropayments from their bank account.
To spendm coins with a vendorV , user U initiates the

3

InitChain procedure followed bym runs of the Spend pro-
cedure. A user deposits micropayments in her bank account
by running the Deposit procedure. Deposit is also used by
payers to redeem unspent micro-coins. Verify can be run by
any participant to verify overspending claims.

B. Properties

We now define a set of security properties for anonymous
micropayment mechanisms, inspired from [21].
Correctness.If an honest user runs Withdraw with an honest
bank, no one will output ERROR. If an honest payer runs
InitChain to generate a micropayment chain and then runs
Spend with an honest payee, the payee will accept. If an
honest payee runs Deposit using a micropayment received in
a previousSpend, an honest bank will accept it.
Anonymity. An anonymous micropayment solution should not
allow the bank, colluding with any number of users, to link
a micropayment to a payer or to link micropayment chains
to each other. Formally, there exists no PPT adversaryA,
controlling the bank and all the other users, that has non-
negligible advantage over coin-flip (50%) when playing the
following games:
Payment Unlinkability:

• A generates and sends the bank’s public keypkB to C.
A generates and sendsm, the standard currency amount in
payments.C runs UKGen for two usersU0 andU1 and sends
their public keys, toA.
• C generates paymentsP0 andP1 of m coins each, on behalf

of usersU0 andU1 by running Withdraw withA. C selects a
bit b ∈R {0, 1} then runs InitChain followed by up tom runs
of Spend withA for paymentPb.
• A outputs its guessb′ for b.

The advantage ofA in this game is defined as Adv(A) =
Pr[b′ = b] − 1/2. We say that a micropayment solution
provides payment unlinkability if no PPTA has non-negligible
advantage in this game.

We define the notion of payee anonymity, describing the
inability of an adversary to guess the identity of a user
performing a deposit operation [22], [23], [24], [25]. We define
it in terms of the following game, where the challengerC
controls two usersV1 and V2 and the adversaryA controls
the bank and all the other users.
Payee Anonymity:

• A generates the public keypkB of the bank, the public
key pkU for a userU andm, the standard currency amount in
payments, and sends them toC. C runs UKGen for two users
V1 andV2 and sends their public keys toA.
• A generates a paymentP of m coins, on behalf ofU . C

selects a bitb ∈R {0, 1}. A runs InitChain followed by up to
m runs of Spend forP with C. C acts as userVb.
• C (asVb) runs Deposit for them coins received fromA.
• A outputs its guessb′ for b.

The advantage ofA in this game is defined as Adv(A) =
Pr[b′ = b] − 1/2. We say that a micropayment solution
preserves payee anonymity if no PPTA has non-negligible
advantage in this game.

Balance.No coalition of payers and payees should be able to
convince the bank to accept a micro-coin that is not valid. We
formally define this property in terms of a one-more-forgery
game. We expand the definition of the game for our CoinPay
and PlusPay solutions, in their respective sections.
Culpability. Given a micropaymentµCHN of valuem, we
say a user overspends it if it runs Spend withµCHN more
thanm times. A user has a small probability of overspending
without being detected and without revealing its identity.
Exculpability. No coalition of users and the bank can frame
another (honest) user for over spending. Formally, an adver-
saryA controlling the bank, plays the following game with
the challengerC controlling a target userU .
• Setup:A generates the public key of the bankpkB and

sends it toC. C calls UKGen forU and sendspkU to A. The
following step is then executedn times.
• Query:C interacts withA by calling Withdraw to obtainm

coins under serial numberSNi. C interacts withA by calling
InitChain, then Spend up tom times on the micropayment
with serialSNi.
• Success Criterion:A outputs serial no.SN and proofP .

We define the advantage ofA in this game to beAdv(A, n) =
Pr[V erify(U, SN, P) = 1]. We say that a micropayment
solution provides exculpability if no PPTA has non-negligible
advantage in this game.
Efficiency. Ideally, micropayments should also be efficient and
feature the following properties.
Aggregation: Micropayments can be combined into a macro-
payment. The macro-payment can be redeemed withB for an
amount equivalent to the sum of all combined micropayments.
Low overheads: The micropayment transaction protocols have
to be computation and communication efficient relatively to
their deployment environment.

V. ORPAY: ONION ROUTING PAYMENTS

We start by investigating the use of micropayments in
Tor [2] as a means to provide quality of service and motivate
system participation. This will constitute a first step to assess
their feasibility and efficiency in real deployments. Concep-
tually, Tor routers will be rewarded with micropayments for
correct traffic relaying – these can then be aggregated and
deposited into accounts provided through a “banking” service
run by Tor’s directory. The accounts’ balance can then be
used as actual cash in webclick-like incentive schemes, in QoS
enforcement (e.g., by prioritization of traffic) or in reputation-
based mechanisms. For example, routers can specify in their
router description that they only accept connections (and
traffic) from parties whose balance exceeds a threshold.

We first note that Tor only guarantees unlinkability of the
source and the destination but not full anonymity. Moreover,
naturally, by its very nature, such an incentive mechanism will
not hide identities (of payers or payees). Yet, it is important to
at least not compromise these existing anonymity properties.
We will achieve this by coupling the fact that routers are
simultaneously part of multiple circuits with a design in which
routers pay on their own for forwarded traffic. These properties
then guarantee the ability to hide traffic origins as well as
source/destination associations in the Tor adversarial model.

4

A. Protocol

Algorithm 1 ORPay.
1.Object implementation ORouter;
2. int coinsNextOR; #coin count owed next OR
3. int L; #circuit length;
4. int pos; #position in circuit;

5. Operation circuitExt(Cell cell, Circuit circuit)
6. ORouter nextOR = circuit.getNextOR();
7. CMT = removeCMT(cell);
8. if (valid(CMT) == false) then
9. return ERROR;
10. fi
11. if (lastRouter() == false) then
12. CMTNext = initChain(nextOR);
13. cell.append(CMTNext);
14. fi
15. nextOR.circuitExtend(cell, circuit);

16.Operation receiveRelayCell(Cell cell,

Circuit circuit, int cellDir, intn)
17. ORouter nextOR = circuit.getNextOR();
18. #Only outward packets contain payments.
19. if (cell.command == CELL RELAY &&

cellDir == OUT) then
20. Payment coins = getPayment(cell);
21. if(!valid(coins)||coins.val! = L− n+ 1) then
22. return ERROR;
23. Payment coinsNext = newPayment(L − n);
24. Spend(nextOR, coinsNext);
25. cell.insertPayment(coinsNext);
26. fi
27. circuit.append(cell, cellDir);

Algorithm 1 shows the pseudo-code of ORPay. When a
user (the source) needs to send data through Tor, it starts by
creating a circuit consisting ofL routers (L defaults to 3),
by calling the circuitExtend operation (Algorithm 1, lines5-
15). Tor builds circuits incrementally; in a first step the source
creates a connection to the first Tor router. Each router extracts
the next hop from the packet’s circuit (line 6) and extracts the
micropayment root commitment (line 7). It then verifies the
validity of the commitment (line 8) and drops the circuit if it
fails (line 9). If the router is not the last in the circuit (line
11), it runs InitChain with the next hop (line 12) to establish a
micropayment chain for future use. It then extends the circuit
to the next hop router (line 15), including the commitment of
the chain previously generated. This process is performedL
times, once for each link in the Tor circuit (the final link is
between the last router and the intended destination and there
is no payment activity involved).

The actual data transfer, shown in the receiveRelayCell
operation (lines 16-27), is executed by each router only when
received packets can be decrypted with the router’s private
key. In receiveRelayCell,conceptuallythe source will include
L micropayments in each packet it sends to the first router
– for this the source and the first router run the Spend
protocol. Recall that theL micropayments are part of the
chain initialized during the circuit establishment step. Without
loss of generality we also assume that forwarding aRelay
packet1 is worth one micropayment. Each router extracts the
next hop from the circuit (line 17) and verifies that the packet
is of type RELAY and outbound (the only packets that contain
payments). If this is the case (line 19) the router extracts its
payment from the packet (line 20). It verifies its validity and

1There are two types of packets in Tor,Control andRelaypackets.Control
packets which contain circuit building and destroying commands are not
considered for payment.Relay packets carry end-to-end data, and they are
what the source needs to pay for.

the fact that it containsL − n + 1 coins (line 21), wheren
is the router’s position in the circuit. It then generatesL− n
coins (line 23) and spends them with the next hop router (line
24).

Routers can aggregate micropayments and report them to
the bank at their leisure. The bank updates router ranks
periodically by calculating the performance of each router, for
instance as the ratio of micropayments earned to micropay-
ments spent. Although each router holds an account, there is
need to worry about overspending or double spending. Selfish
routers which use Tor only to relay their traffic but not provide
service to others people will end up with very low ranks.

Often the destination host can generate (significant) traffic
back to the source. Even though initiated by the destination,
the source might be the one that is expected to pay for it.
Similar to uploading, every router needs to payL − n coins
to its successor, so that everyone gets one coin for every
packet. This can be done retroactively by having the routers
piggybacking micropayments to future outward packets. Note
that the source can also pay ahead for traffic initiated by the
destination: during the circuit initialization step, the source
provides payment for the first packet expected to be sent by
the destination and similarly, outward packets will contain
micropayments for future packets.

In practice, numerous optimizations can be deployed to the
above protocol. For example, a single payment token can be
included for multiple packets. Also, to accelerate the protocol,
a sliding window scheme can be used to allow the destination
to send several packets at a time. If the source trusts the
destination to correctly acknowledge receipt of packets, the
potential cash loss due to unfair behavior can be bounded by
the size of the sliding windowW . The upper bound on cash
loss isW ∗e∗L, wheree is the value of each payment amount
andL is the number of routers.

The benefit that the payment scheme brings is clear: the
more traffic a Tor router relays for others, the higher rank it
will get. As a result, its personal traffic will be preferred in the
Tor network. Note that pure Tor clients (not routers) are not
given rank and have the lowest priority in the Tor network.

B. Implementation: ORPay

We implemented ORPay, a proof of concept prototype of
the above mechanisms. ORPay deploys out of band (OOB)
communication for payment primitives and control messag-
ing. The “Bank” is implemented in C (using OpenSSL for
cryptography) as a stand-alone component attached to the Tor
directory server. One of the main raison d’etre of ORPay was
to evaluate the practicality of “payment chain” based micro-
payment approaches. We thus ran a number of experiments to
evaluate the associated overheads. The controlled environment
consisted of a set of interconnected physical machines (with
1.66GHz Intel Core Duo CPU and 2 GB RAM) running one
directory server and a set of tor routers based on VMs, each
router in turn running Tor with default settings under Ubuntu
Linux. The average observed inter-client bandwidth was 500-
600KB/s, the average latency between physical machines was
1-2ms (0.5ms inter-VMs on the same machine). ORPay was
set up to send one micropayment for every 20 routed packets.

5

In a first experiment we evaluated the per-hop latency
overheads introduced by ORPay. These overheads were mainly
a result of host-side payment processing as well as payment
propagation network latencies. The payment processing does
not contain any expensive public key operations (the signature
cost in InitChain step only happens once per session and
the cost is amortized). The out of band nature of the design
resulted in values of about 0.9ms per 3 relay setups, averaging
under 300 microseconds per relay.

Next we aimed to understand the impact of the micro-
payment mechanism on core throughput. We benchmarked
a number of file transfers of increasing amounts of data.
As payments average around 20 bytes and the standard Tor
frames are 512 bytes, a general worst-case upper bound of just
under 4% on bandwidth overhead can be established (for one
payment token per frame). The observed overheads averaged
under 2%, due to multiple payload frames per token.

Collected payments can be deposited in the bank during
network idle time. The overhead for the directory server to
process one deposit consists of reading data (a payer signed
commitmentCMT and the last payword) from the connection,
one signature verification and a number of cryptographic
hashes. For a payment chain of length 1,000, the observed
overhead was under 2ms. As discussed, by its very nature, the
above reputation/incentive mechanism will not hide payersor
payees identities. This solution does not provide payment un-
linkability, payment indistinguishability, or payee anonymity.
However, by letting each router only pay its successor, and
considering the fact that each router can be simultaneously
part of multiple circuits, it hides the traffic origins as well as
source/destination associations2.

VI. COINPAY: OVERSPENDINGPROTECTION

CoinPay aims to provide protection against overspending,
while ensuring anonymity. Payers explicitly withdraw cash
from their accounts before being able to generate micropay-
ments. Additionally, instead of directly signing micropayment
chains, and thus revealing their identity, payers ask the bank to
partially blindly sign thew0 roots of the micropayment chains.
To prevent a payer from overspending, threshold splitting is
employed to generate shares of the payer’s identity. These
“identity shares” are directly linked to micropayments: for a
micropayment chain of valuem, n > m identity shares are
generated, such that anym+1 shares are enough to recover the
payer’s identity. In every micropayment, the payer is forced
to reveal a randomly chosen identity share to the payee. In
case of overspending, the bank will have enough shares to
reconstruct the identify of the overspender.

A. The CoinPay Protocols

Withdraw (U(pkB, skU ,m), B(skB ,m)). U runs Chaum’s
partially blind signature protocol [26] withB, using equivalent
payment messages. Foreachpayment message,U performs
the following steps (we denote this subprotocol as SplitId)

2This is no longer true for other Internet services such as in cloud computing
or even p2p file sharing, where there are no intermediate nodes to hide the
sender’s identity.

• Generate{sh1, .., shn}, shares ofId(U), wheren > m 3

such that any but no less thanm + 1 shares can be used to
reconstructId(U).
• Generaten “identity shares” IdSharei = {shi, i,m},

wherei is a unique sequence number.i is used later to prove
that the share is not a duplicate. Commit to the identity shares.
Let C = π{CMT (IdShare1),..,CMT (IdSharen)}, whereπ
is a random permutation.
• Construct micropayment chain of lengthm andw0 as root.
• Generate the payment messageM = {m,SN,w0, C},

whereSN is a unique serial number.
Note thatw0 and C are different for each of the payment
messages.U blinds the payment messages and sends them to
B. B requestsU to unblind all but one payment message. For
each unblinded messageB verifies that:
• The first field of the unblinded payment message ism.
• Each identity share has a unique sequence number and its

last field ism.
• Any m+ 1 identity shares correctly reconstructId(U).
• Then commitments to identity shares are correct.

If any verification fails,B outputs ERROR. Otherwise,B
withdraws m currency units fromU ’s account and sends
the signed unrevealed blinded message toU – who is then
able to recover the anonymous micropayment chainP =
{m,SN,w0, C}skB

.
InitChain (U(skU , P), V (skV , pkB)). InitChain inherits and
extends the behavior of Payword’s InitChain procedure.
In addition, in CoinPay’s InitChain,U sends P =
{m,SN,w0, C}skB

to V . V verifies B’s signature and the
fact that the first field of the signed message ism. If any of
these checks fails,V returns ERROR. Otherwise,V storesP .
Spend(U(skU , pkV , µCHN,P, l), V (skV , pkB, P, l)). V
generates a random numberRV and sends it toU . U
performs the following steps:
• Generate the next coin in the micropayment chain,wl.

Sendwl to V .
• UseId(V), V ’s random valueRV , the root of the micro-

payment chain and a sequence number as input to a random
number generator G and select the index of the challenge – one
of the n identity shares –i = G(Id(V), RV , w0, l) mod n.
SendIdSharei to V along with additional information allow-
ing the verification of the commitment.
Let S be the set of identity shares already received byV .
Upon receipt of the above values,V performs as follows:
• If IdSharei ∈ S request a new identity share. To avoid

misunderstanding, bothU and V can maintain the list of
identity shares consumed so far.
• Verify the validity of the micropayment against the root of

the micropayment chain,hl(wl) = w0.
• Verify the correct computation of the index of the revealed

share (i = G(Id(V), RV , w0, l) mod n). Verify the format of
the revealed identity share:IdSharei = {shi, i,m}.
• Verify the validity ofCMT (IdSharei), using the revealed

identity share and the setC.

3There is a relationship betweenn andm that will be defined later, e.g.,
in the proof of Theorem 2.

6

If any of these verifications fails,V generates ERROR.
Otherwise, it addsIdSharei to the set S. LetD =
(P, S, wf , wl, f, l) be the deposit set.wf denotes the first
micro-coin (of indexf) andwl is the last micro-coin (of index
l) received byV .
Deposit(V (skV , pkB, D), B(pkV , skB)). V deposits D =
(P, S, wf , wl, f, l) to B. P = {m,SN,w0, C}skB

, S is
the set of shares corresponding to the deposited micro-
coins, wf and wl are the first and last micro-coins (of
index f and l respectively) from the chain. For each se-
rial number SN seen so far,B stores a record of format
RecSN = {P, IdShare1, .., IdSharer, C}, whereIdShare1,
..IdSharer are shares deposited so far from the corresponding
micropayment.B executes Deposit as follows:

• Verify own signature on theP value.
• For i = f..l, verify thathi(wi) = w0.
• Retrieve from local storage the recordRecSN whose first

field is the valueP . RecSN may be undefined. Verify that each
received identity share is unique. Verify that the commitment
of each received identity share is indeed part of the setC
(part of theP). Let l ≤ k be the number of identity shares
that verify and that are not already stored inRecSN .
• If any of these checks fails, generate ERROR.
• Otherwise, credit V’s account withl coins and store all the

received identity shares underRecSN .
• If overspending is detected, that is the number of shares

in RecSN exceedsm+1, recoverId(U) using the shares and
publish the proofP={Id(U),RecSN}.
Verify(U, SN,RecSN)) As defined above,RecSN =
{P, IdSharei, i = [1..r], C}. To verify overspending charges,
perform the following steps:
• Verify B’s signature on theP value and the validity of the

included identity shares.
• Use the identity shares to reconstruct the identity of the

over spender. If the reconstruction fails or its output differs
from Id(U), output ERROR. Otherwise accept.

B. Analysis

Correctness:By construction, it is straightforward to see that
if an honest user runs Withdraw with an honest bank, the
bank’s verification step of anyt − 1 payments will succeed.
Thus, no participant will output ERROR. Similarly, if an
honest payer runs InitChain and Spend (for the same payment)
with an honest payee, the payee’s verifications will succeed.
Finally, if an honest user runs Deposit for a payment previ-
ously received, with an honest bank, the bank’s verifications
will succeed. Moreover, since the payment was received from
an honest user, no over spending will be detected.

Theorem 1:Payments in CoinPay are unlinkable.
Proof: Our proof is based on a reduction from the hiding

property of a TSS. Specifically, we assume an algorithmB
that has advantageǫCP when playing the unlinkability game.
We then build an adversaryA that usesB as a black box to
gain advantageǫTSS when playing the hiding game of the
threshold secret sharing scheme.

The reduction works as follows.C sends parametersk
andn to A. A generates two random numbers,R0 andR1,

and selectsk index values. For simplicity of exposition, let
these indexes be1, .., k. A sends the indexes, along with
R0 and R1 to C. C selectsb ∈R {0, 1}, generates shares
sh1b, .., shkb of Rb and sends them toA. A calls UKGen
to generate two usersU0 and U1, such thatId(U0) = R0

and Id(U1) = R1. A initializes algorithmB and gives it the
public keys ofU0 andU1, along withk as the number of coins
in a payment andn as the total number of identity shares.
B, following the unlinkability game, calls BKGen and sends
the bank’s public key toA. A runs Withdraw withB with
one modification: sinceA only possessesk out of n shares, it
fabricates additional sharesIdSharei = {shi mod k, i,m}. In
Withdraw B receives commitments of the fabricated identity
shares. During the verification step of Withdraw, ifB requests
A to reveal exactly thesh1b, .., shkb received fromC,A simply
aborts and then repeats.A then runs the InitChain protocol
once and Spend protocolk times with B. After the jth run
of the Spend protocol, w.l.o.g., letR = {shi1 , .., shij} be the
shares revealed byA to B. During thej+1st run of Spend,A
generates a verifiable index and picks the share corresponding
to the index. If the share is not inR, add the share toR and
continue the Spend protocol as defined in CoinPay. Otherwise,
abort Spend and repeat. After receivingk valid coins,B is able
to output and send toA its guessb′ for the bit b. A sendsb′

to C. We now prove the following lemma.
Lemma 1:A terminates in expected polynomial time.

Proof: A’s interaction withC requires a constant amount
of computation and communication.A’s probability to abort
the Withdraw operation is1 − 1/t, where t is the number
of messages used in the blind signature protocol. Thus, the
expected number of calls to Withdraw ist. The complexity of
Withdraw is linear int andn. A also runs Spendk times. For
thej+1st run,j+1 ≤ k, the probability of selecting an index
whose share has not yet been revealed is(n−j×n/k)/(n−1).
Thus, the expected total number of calls for Spend is
k∑

j=1

n− j + 1

n− (j − 1)× n/k
=

k

n

k∑

j=1

n− j + 1

k − j + 1
≤

k

n
n

k∑

j=1

1

j
≈ k ln k

Since Spend’s computation and communication is constant,
this implies thatA is PPT.

When A terminates,B has one payment message (one
micropayment) andk valid spent coins from it. IfB succeeds
in guessing b, that is, the identity of the user that generated the
payment, thenA can also guess to which user the shares from
C belong to.A’s advantage in the TSS Hiding game equalsB’s
advantage in the CoinPay Unlinkability game:ǫTSS = ǫCP .

Balance: We define this property in terms of a one-more-
forgery game. Specifically, an adversaryA runs Withdraw
l times with the bankB. Let Sj be the set of identity
shares generated during thejth run of Withdraw, 1 ≤
j ≤ l. Let S = {Sj|1 ≤ j ≤ l}. Let Pj be the pay-
ment generated in thejth run of Withdraw.A then outputs
a deposit tupleD = (P, IdShare, w) such that IdShare
/∈ S. The advantage ofA is defined to beAdv(A) =
Pr[Deposit(A(paramsA, D), B(paramsB)) = 1]. CoinPay
is said to have the Balance property if no PPT has non-
negligible advantage in this game.

7

CoinPay provides the Balance property. Consider an ad-
versaryA that has a non-negligible advantage in the above
game. A is then able to generate a deposit tupleD =
(P, IdShare, w) such that IdShare/∈ S and the Deposit
procedure succeeds with non-negligible probability. Then,A is
able to either (i) forge a valueP = {m,SN,w0, C}skB

or (ii)
produce a value IdShare/∈ S such thatCMT (IdShare) ∈ C,
whereC is the set of identity share commitments. Case (i)
cannot occur withoutA having a non-negligible advantage in
forgingB’s signature. Case (ii) can only occur ifA has non-
negligible advantage in the partially blind signature protocol or
if A has non-negligible advantage against the binding property
of the commitments scheme.
Culpability: Overspending is prevented through the use of the
identity shares. A payer that spends more thanm micropay-
ments from a chain of valuem, also reveals more thanm
identity shares, which are then enough to expose its identity.
Note that the payer cannot control which share it has to reveal,
due to the payee’s involvement in the choice (the randomRV).
While a detailed discussion can be found in [27], we include
here the following theorem.

Theorem 2:The gain of a payer when attempting to over-
spend a micropayment chain with any payee is 1/(f-1).

Proof: Let us assume a payerU that has already spent
m out of its total n identity shares and m+1 identity shares
are sufficient to reconstruct its identity.U then initiates a new
transaction with a vendorV consisting of one execution of
InitChain, followed by executions of Spend in which the share
to be revealed is one of the m already spent. The expected
number of runs of Spend before an m+1st share has to be
revealed isE[m + 1] = 1/pm+1, wherepm+1 = (n −m)/n
is the probability of selecting a new share. Thus,E[m+1] =
n/(n−m). The gain ofU in this attack is defined as

Gain(U) = E[m+ 1]− 1 =
m

n−m
=

1

f − 1
,

since one of the runs of Spend will result in them+1st share
being revealed.

For instance, forf = 10, Gain(U) = 11%. Thus, the chance
of an attacker of succeeding in this attack is far below the
chance of failing. Since the cost of failing (identity revelation,
tearing down established Tor circuits, etc) also exceeds the
benefit of succeeding, overall, our solution encourages rational
users to be honest.
Exculpability: Let us assume that an algorithmB exists that
has non-negligible probability of succeeding in the exculpa-
bility game defined in Section IV-B. Then, we can build an
adversaryA that has non-negligible advantage in the hiding
game of a TSS.A interacts with the challengerC in the hiding
game, to generate valuesR0 andR1 and to obtain two sets of
shares, each of eitherR0 or R1. A uses each set of shares in
the Query step of the exculpability game withB, to generate
and spend coins. The coins are generated from user accounts
with ids R0 or R1. If a Query step fails (see above proofs),
A repeats it (a polynomial number of times int andm). Let
ǫS be the advantage ofB in this game,ǫS = Adv(B, 2) (see
Exculpability definition).ǫS is the probability thatB produces
a serial numberSN and a proofP such that Verify(Rb,SN ,P)
accepts, forb ∈ {0, 1}. Then, with probabilityǫS , A returns

0 to C – its guess is that the two sets of shares were for the
same number (eitherR0 or R1).
Other Properties: CoinPay naturally provides offline verifi-
cation and aggregation. Moreover, as our experiments report
in Section VIII show, CoinPay’s overheads are low.

VII. PLUSPAY: PAYEE ANONYMITY, EFFICIENT BANK

One of the problems of CoinPay is the payer’s dependence
on the bank to sign each micropayment chain. While this
may be reasonable for long chains, it makes little sense for
small chains, due to the small return on the generation cost.
Yet, small chains are more likely to occur in practice, e.g.,
in short interaction between payers and payees. Moreover,
as mentioned before, a payer cannot use the same micro-
payment chain with multiple payees, without compromising
the payment indistinguishability property. Even if the payer
generates a batch of micropayment chains at a time, each
payment instance needs to be separately signed (blindly) by
the bank. Another problem is that, since each coin is bound to
an identity, CoinPay works only for non-transferable coins. We
now introduce PlusPay, a protocol addressing these problems.

A. Overview

Overall, PlusPay works as follows. A payer withdraws e-
cash from its bank account. Then, by interacting with the
bank through an anonymizer, it opens an anonymous account
in which it deposits the previously acquired (un-traceable)
e-cash. The anonymizer provides unlinkability between the
payer’s identity and its anonymous account. The anonymous
account is then associated with a public/private key pair,
generated by the bank and known thereafter only by the
payer that opened it. To commit to a micropayment chain
root w0 – instead of requiring the bank’s signature as in the
CoinPay solution – the payer will sign it using the private
key associated with its anonymous account. More formally,
PlusPay, a micropayment system with payer independence is
a set of protocols, PlusPay ={BKGen, UKGen, Withdraw,
OpenAC, SplitId, InitChain, Spend, Deposit, Verify}. The
functionality of most of these protocols is inherited from the
anonymous micropayment scheme described in Section IV-A.
We now describe the functionality of the new logic.

B. Solution

Our solution relies on the existence of a mix network, de-
noted by AChan (see Section III for definition and properties).

Withdraw (U(pkB, skU ,m), B(pkU , skB,m)). U generates a
payment of format(SN,m) and a token of format(token,m),
whereSN (serial number) and token are independent random
numbers (using different formats to be distinguished).U asks
B to partially blindly sign the payment and token, while also
allowing B to verify their correctness: the format ofSN and
token and the value ofm. If the verification fails,B generates
ERROR. Otherwise,U obtains a signed anonymous e-cash
bill, EC = {SN,m}skB

, and a tokenTK = {token,m}skB

with SN and token unknown toB.

OpenAC(U(pkB, skU , EC,m), B(skB ,m)). U performs the
following steps:

8

• Generate a new public/private key pair(pkAC , skAC) for
a new anonymous accountAC.
• SendpkAC and the blindly bank-signed e-cashEC ob-

tained during the Withdraw step, toB, over AChan.

WhenB receives this message it performs the following:

• Check the validity of the e-cash (the signature and whether
it has been spent before). IfEC is invalid, generate ERROR.
• Open an anonymous accountAC identified by a (random)

serial numberSNAC and initialize it with the m-valued
currency ofEC.
• Sign balance certificate BalCert(AC) =

{pkAC , SNAC ,m}skB
, and send the anonymous account

information AC={SNAC ,m,BalCert} to U over AChan.

We note that this is the only step requiring an anonymizer in
our protocol. Its associated traffic is negligible. When deployed
for micropayments in anonymizers, the system can be set up
to allow new payers to use the anonymizer for free to open
their account. This avoids the circularity of new payers being
unable to (micro)pay for anonymizer traffic when joining.

SplitId (U(pkB , skU , AC, TK,m), B(skB,m)). U performs
the following steps:

• Use a(m + 1, n) TSS scheme to splitId(U) into shares
sh1, .., shn. Generate random numberRU ∈R {0, 1}k. Use
each share to build an ”identity share“ of formatIdSharei =
{shi, i,m, {CMT (SNAC)}skAC

}

• Generate the set of commitments of identity shares,C
= π { CMT(IdShare1),..,CMT(IdSharen)}, for a random
permutationπ.
• Send the bank-signed tokenTK to B.
• Engage in partially blind signature protocol withB to sign

the tuple{m,C}. At the end of this protocol,B will return
P = {m,C}skB

and be assured w.h.p. (a function of deployed
blind signature protocol, e.g., cut-and-choose) that:

• Signature onTK verifies.
• TK ensures the existence of an account with balancem.
• TK has not been used before (bank keeps track of used
TK values).
• The identity share commitments are correct.

U’s outcome, ifB does not output ERROR, is a payment
of formatP = {m,C}skB

InitChain (U(skU , BalCert(AC), P), V (skV , pkB)). Be-
sides the inherited behavior of the InitChain procedure of
Payword, PlusPay’s InitChain consists of the following ac-
tions. U generates a micropayment hash chain and commits
to its root. Instead of the commitment being generated using
U ’s private key, it is generated using the secret key associated
with the anonymous accountAC. The commitment has format
CMT = {w0, SNAC}skAC

. U sendsCMT , the BalCert(AC)
certificate and theP value toV . V does the following:

• Verify B’s signature onP and that the value ofm in P
matches the value ofm in BalCert.
• ValidateCMT by checking that (i) the public keypkAC

contained in BalCert can verify the signature onCMT and
(ii) the account numberSNAC contained in CMT is consistent
with the one in BalCert. If any check fails, output ERROR.

Spend(U(skU , pkV , µCHN,P, l), V (skV , pkB, CMT, l)).
V sends a random valueRV to U . U performs as follows:
• SendV a new micropayment coin, part ofµCHN .
• SendV a provably random selected identity share using

the technique described in CoinPay. Let the chosen share be
IdSharei = {shi, i,m, {CMT (SNAC)}skAC

}.
• Open the commitmentCMT to V , revealingSNAC .
Let S be the set of identity shares previously revealed by

U to V . V verifies the newly revealed identity share before
accepting the micropayment:
• The commitment ofIdSharei is contained in the commit-

ment setC, signed byB (part ofP).
• IdSharei has the expected index i =
G(Id(V), RV , w0, l) mod n (as in the CoinPay solution).
• The balancem from IdSharei matches the ones in Bal-

Cert andP .
• The commitment onSNAC is correct.
If any check fails, V outputs ERROR. Else it adds

IdSharei to set S. Let the deposit tuple D =
(P,CMT,BalCert, S,RU , wf , wl, f, l), wherewf is the first
andwl the last micro-coin received byV , of indexf and l.

Deposit(V (skV , pkB, D), B(pkV , skB)). V sends toB, over
AChan, the deposit tupleD containing micro-coins from index
f to l in a chain: the commitment set signed byB (P), the
root of the chain signed with the private key of an anonymous
account (CMT), the BalCert value, the obfuscating factorRU

and l − f + 1 unique IdShare values.B verifies that

• The P and BalCert values are signed with its public
key. TheCMT value is signed with the private key of the
anonymous account whose serial number is contained in both
P and BalCert.
• All the identity shares are unique, signed and associated

with the same anonymous accountSNAC . Also, their com-
mitments in the commitment set contained inP .
• For i = f..l, hi(wi) = w0: the l − f + 1 micro-coins

verify the link to the micropayment chain rootw0 contained
in CMT . Moreover, the account balance,m (contained in
BalCert), exceeds or equalsl − f + 1.

If any verification fails, B generates ERROR.
Otherwise, it records the shares associated with
the serial number SNAC into a record of format
RecSNAC

= {P, IdShare1, .., IdSharer, C}, where
IdShare1, ..IdSharer are shares deposited so far from the
corresponding micropayment. To reduce storage cost and the
time required to detect overspending, expired micropayments
can be garbage collected and payees will need to cash
payments before their expiration date. If more thanm
shares are collected,B recoversId(U) using the shares and
publishes the proof P={Id(U),RecSN}. B blindly signs (over
AChan) a payment token of valuel− f + 1. V later provides
this payment token over an authenticated channel toB, to
deposit thel − f + 1 micro-coins into its account. A payer
can call Deposit to redeem unspent micropayments and her
identity will be protected as long as she does not over spend.

Verify(U, SN,RecSN)) As defined above,RecSN =
{P, IdSharei, i = [1..r], C}. To verify overspending charges,

9

perform the following steps:

• Verify B’s signature on theP value and the validity of the
included identity shares.
• Use the identity shares to reconstruct and the identity of

the over spender. If the reconstruction fails or its output differs
from Id(U), output ERROR. Otherwise accept.

While a detailed analysis of PlusPay’s properties is included
in [27], we include here the payee anonymity proof.
Payee Anonymity: Let us assume that an algorithmB exists
that has advantageǫPA in the Payee Anonymity game (see
Section IV-B). The challengerC interacts with B during
InitChain and Spend and obtains a deposit tupleD. C uses
D as an input to the Deposit procedure it runs withB over
AChan. At the end of Deposit,C obtains a signed payment
token of valuel − f + 1. B cannot have a non-negligible
advantage in guessing whetherC has acted as userV1 or user
V2, without being able to build input-to-output correspondence
in a mix net or without breaking the blindness property of the
blind signature protocol.

VIII. P ERFORMANCEEVALUATION

We have evaluated the performance of the CoinPay and
PlusPay on off-the shelf end-user hardware: Intel P4, 3.4 GHz,
2GB RAM, openssl 0.9.8b [28]. Under light-load multi-user
mode, this setup allows about 261 RSA-1024 signatures and
5423 RSA verifications per second as well as more than 1.5
million SHA-1 crypto hashes per second (on 16Byte blocks).
We assumed a network of no more than 6Mbps bandwidth
and 1ms latency. Typical Tor latencies were assumed (500ms)
[2]. We estimated overheads and throughputs for the case of
a payer opening an anonymous account and depositing 100
coins (while generating one identity share per coin).

We have replaced the commitment set C employed by
both solutions with a more efficient Merkle tree built on the
commitments of identity shares from C. This enables the bank
to sign a single value (the root of the Merkle tree). The proofof
correctness of a commitment consists of revealing the Merkle
tree path corresponding to that commitment.
Payment Setup.Figure 1(a) shows the costs for each payment
setup protocol call, when the overspending control factor (f)
increases from 1 to 100. They-axis is shown in logarithmic
scale. For the cut and choose step of the Withdraw protocol,
we have considered that the payer generatest = 100 messages
(2t − 1 RSA blinding operations), out of which the bank
signs only one (one RSA signature). Even though the network
delay of Withdraw depends ont + 1 messages and one
challenge/response protocol, its total overhead is only 100ms.

During the OpenAC step, the computation overhead consists
of the bank performing an e-cash verification (one RSA
verification) and a RSA signature generation. The total costis
then dominated by Tor (around 500ms). The cost of generating
a new key pair is not factored in as it can be incurred offline by
the client. The SplitId protocol consists of the payer generating
t = 100 identity sets and building a Merkle tree over each set
(2 f ∗m crypto hashes, wherem is the payment value). This
is followed by a cut and choose protocol consisting of2t− 1
RSA encryptions,t − 1 share reconstructions and one RSA

signature. The reconstruction can be done efficiently using
an O(m log3 m) algorithm [29], [30]. The network delay of
SplitId is dominated by the cost of sending thet blinded
identity sets. Figure 1(a) shows that, as expected, the overall
cost of SplitId increases linearly with the overspending control
factor f . This increase is reasonable, ranging from less than
100ms forf = 1 to no more than 200ms forf = 100.

In CoinPay, the setup consists of a single call of the
Withdraw protocol. Using the previous evaluation scenario,
Figure 1(b) shows the ratio between the setup time of PlusPay
and the setup time of CoinPay. For small values of the
overspending control factor, the ratio is around 10 (CoinPay
is faster here). The ratio decreases for higher values off ,
reaching 5 forf = 100. This decrease is due to the fact that
the Withdraw protocol is very similar and has the same cost
as the SplitId protocol of the PlusPay solution. Both protocols
generate identity shares whose number is determined byf .
Thus, higher values off make the setup stages of PlusPay and
CoinPay converge. This ratio also shows the number of times
an anonymous account generated in PlusPay has to be reused
before the cost of its generation becomes smaller than the cost
of using CoinPay. This was one of the main advantages of
PlusPay over CoinPay. Our evaluation shows that this number
is small, effectively minimizing usage pattern leaks.

Throughputs. Figure 1(c) shows the computation overhead
for the bank during Withdraw, OpenAC and SplitId protocol
calls of PlusPay when the number of message duplicates,t,
during the cut and choose protocols increases from 1 to 100 but
the value off is set to 10. The cost of the Withdraw protocol
of CoinPay is the same as the cost of SplitId of PlusPay. The
OpenAC protocol has constant overhead, allowing the bank to
process around 250 OpenAC calls per second. The overhead
of the Withdraw and SplitId protocols is linear in the value of
t. That is, the bank can process between 50 (fort = 100) and
260 (for t = 1) Withdraw calls per second. SplitId is more
compute intensive – the bank can perform between 10 (for
t = 100) and 260 (fort = 1) calls per second. As a result
then, for PlusPay the length of the SplitId time frame has to be
around 5 times the length of the Withdraw time frame. Note
that the OpenAC time frame can be as small as a fifth of the
Withdraw time frame.

Costs. InitChain consists of a signature generation andm
crypto hashes performed by the payer and three signature
verifications, performed by the payee. Spend consists roughly
of log (f ∗m) crypto hashes performed by the payee. Deposit
requires the bank to perform one signature verification and
log (f ∗m) crypto hashes per micropayment to verify the
correctness of the identity shares.

Figure 1(d) shows the transaction cost (InitChain plus
Spend) and the Deposit cost per micropayment. While for
short chains, the transaction cost is higher (5ms for 1 payment
chain) than the deposit cost (2ms), this changes for longer
chains. The cost of a Deposit operation is dominated by a
signature verification, whereas for a micropayment transaction,
signature verification costs are amortized over the number of
spent micropayments. For a chain of length 50, the transaction
cost is close to 500µs and the deposit cost is 750µs – even

10

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100T
im

e
co

st
 to

 s
et

up
 a

n
ac

co
un

t (
se

c)

Overspending control factor (f)

Withdraw
OpenAC

SplitId

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 10 20 30 40 50 60 70 80 90 100

S
et

up
 ti

m
e

P
lu

sP
ay

/C
oi

nP
ay

Overspending control factor (f)

Setup time PlusPay/CoinPay

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

T
ra

ns
ac

tio
ns

 /
se

co
nd

Cut and choose factor (t)

Withdraw
OpenAC

SplitId

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 10 20 30 40 50

A
m

or
tiz

ed
 ti

m
e

co
st

 (
m

s)

Length of the payment chain

cost per transaction
cost per deposit

Fig. 1. (a) PlusPay Account setup as a function of the overspending control factor (f). OpenAC has the highest cost, dominated by the Tor
latency. (b) The ratio of the setup costs of PlusPay and CoinPay decreases with increasingf . PlusPay needs only a few anonymous account
re-uses to become more efficient than CoinPay. (c) The numberof operations the bank can process in a second whent (in the cut and
choose protocols) ranges from 1 to 100. Even fort = 100, the bank can perform 10 SplitId calls/s. (d) Cost of micropayment transactions
and deposit operations for PlusPay and CoinPay, as a function of the micropayment chain length: 500µs for a transaction and 750µs for a
Deposit (chain of length 50).

for short chains the transaction cost is almost negligible.

IX. CONCLUSIONS

We introduced the first set of efficient and correct micro-
payment mechanisms with anonymity. They feature offline
verification, aggregation, statistical overspending prevention
and very low overheads. Throughputs of thousands of trans-
actions per second are supported. We implemented ORPay.
In our experiments, its overheads are under 4%. Anonymous
micropayments become thus a viable incentive mechanism for
practical deployment in networked services such as packet
routing, anonymizers, and peer to peer file sharing, enabling
fairness, quality of service and global cost optimization.

REFERENCES
[1] Apple. Apple iTunes Music Store. Online at http://www.apple.com/

itunes, 2009.
[2] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The

second-generation onion router. InProceedings of the 13th USENIX
Security Symposium, pages 303–320, 2004.

[3] Beverly Yang and Hector Garcia-Molina. Ppay: micropayments for peer-
to-peer systems. InCCS ’03: Proceedings of the 10th ACM conference
on Computer and communications security, pages 300–310, New York,
NY, USA, 2003. ACM.

[4] Yao Chen, Radu Sion, and Bogdan Carbunar. Xpay: practical anonymous
payments for tor routing and other networked services. InWPES ’09:
Proceedings of the 8th ACM workshop on Privacy in the electronic
society, pages 41–50, New York, NY, USA, 2009. ACM.

[5] Ronald L. Rivest and Adi Shamir. Payword and micromint: Two simple
micropayment schemes. InProceedings of the International Workshop
on Security Protocols, pages 69–87, London, UK, 1997. Springer-Verlag.

[6] Charanjit Jutla and Moti Yung. Paytree: amortized-signature for flexible
micropayments. InProceedings of the 2nd USENIX Workshop on
Electronic Commerce, Oakland CA, 1996.

[7] Ronald L. Rivest and Silvio Micali. Electronic lottery tickets as
micropayments. In Rafael Hirschfeld, editor,Financial Cryptography,
pages 307–314, Anguilla, British West Indies, 1997. Springer.

[8] Mark S. Manasse. The millicent protocols for electroniccommerce. In
WOEC’95: Proceedings of the 1st conference on USENIX Workshop on
Electronic Commerce, pages 9–9, Berkeley, CA, USA, 1995. USENIX
Association.

[9] Charalampos Manifavas Ross J. Anderson and Chris Sutherland. Net-
Card: A practical electronic-cash system.Lecture Notes in Computer
Science - Security Protocols, 1189:49–57, 1997.

[10] Phillip M. Hallam-Baker. World Wide Web Consortium: Micro Pay-
ment Transfer Protocol (MPTP). Online at http://www.w3.org/TR/
WD-mptp-951122, 1995.

[11] Richard J. Lipton and Rafail Ostrovsky. Micro-payments via efficient
coin-flipping. In In Financial Cryptography, pages 1–15. Springer-
Verlag, 1998.

[12] Ralf Hauser, Michael Steiner, and Michael Waidner. Micro-payments
based on iKP. Technical report, 1996.

[13] Elli Androulaki, Mariana Raykova, Shreyas Srivatsan,Angelos Stavrou,
and Steven M. Bellovin. Par: Payment for anonymous routing.In
Nikita Borisov and Ian Goldberg, editors,Proceedings of the Eighth
International Symposium on Privacy Enhancing Technologies (PETS
2008), pages 219–236, Leuven, Belgium, July 2008. Springer.

[14] Yao Chen, Radu Sion, and Bogdan Carbunar. Tipping pennies? pri-
vately. practical anonymous micropayments. Online at http://www.cs.
stonybrook.edu/∼sion/research.

[15] Oded Goldreich.Foundations of Cryptography. Cambridge University
Press, 2001.

[16] David L. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms.Commun. ACM, 24(2), 1981.

[17] Masayuki Abe. Universally verifiable mix-net with verification work in-
dendent of the number of mix-servers. InProceedings of EUROCRYPT,
pages 437–447, 1998.

[18] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anony-
mous channel and all/nothing election scheme. InEUROCRYPT ’93:
Workshop on the theory and application of cryptographic techniques on
Advances in cryptology, pages 248–259, 1994.

[19] Adi Shamir. How to share a secret.Commun. ACM, 22(11):612–613,
1979.

[20] George R. Blakley. Safeguarding cryptographic keys. In Proceedings of
the National Computer Conference, 1979.

[21] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact
e-cash. InProceedings of EUROCRYPT, pages 302–321, 2005.

[22] Holger Bürk and Andreas Pfitzmann. Digital payment systems enabling
security and unobservability, 1989.

[23] Kai Wei, Alan J. Smith, Yih-Farn Robin Chen, and Binh Vo.Whopay: A
scalable and anonymous payment system for peer-to-peer environments.
In ICDCS ’06: Proceedings of the 26th IEEE International Conference
on Distributed Computing Systems, page 13, Washington, DC, USA,
2006. IEEE Computer Society.

[24] Larry Shi, Bogdan Carbunar, and Radu Sion. Conditionale-cash. In
Proceedings of Financial Cryptography, pages 15–28, 2007.

[25] Marina. Blanton. Improved conditional e-payments. InApplied Cryp-
tography and Network Security, pages 188–206. Springer, 2008.

[26] David Chaum. Blind signatures system.Advances in Cryptology,
Proceedings of CRYPTO, pages 153–156, 1983.

[27] Bogdan Carbunar, Yao Chen, and Radu Sion. Tipping Pennies? Pri-
vately. Practical Anonymous Micropayments. Technical report, Florida
International University, 2012. www.cs.fiu.edu/∼carbunar/upayments
techrep.pdf,www.cs.stonybrook.edu/∼sion/research/.

[28] OpenSSL. The openSSL project. OpenSSL: The open sourcetoolkit for
SSL/TLS. www.openssl.org.

[29] Donald E. Knuth. Fundamental Algorithms, volume 2 of The Art
of Computer Programming. Addison-Wesley, Reading, Massachusetts,
second edition, 10 January 1973.

[30] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.The Design
and Analysis of Computer Algorithms. Addison-Wesley, 1974.

Bogdan Carbunar is an assistant professor in the
School of Computing and Information Sciences at
the Florida International University. Previously, he
held various researcher positions within the Applied
Research Center at Motorola. His research interests
include distributed systems, security and applied
cryptography. He holds a Ph.D. in Computer Science
from Purdue University.

Yao Chen is a Ph.D student at Stony Brook Uni-
versity under the supervision of Radu Sion. Her
research interests include Efficient Computing and
Cyber Security. She received her B.S. from Zhejiang
University.

11

Radu Sion heads the Stony Brook Network Secu-
rity and Applied Cryptography (NSAC) Lab. His
research interests include Information Assurance and
Efficient Computing. He builds systems mainly, but
enjoys elegance and foundations, especially if of
the very rare practical variety. Sponsors and col-
laborators include IBM, IBM Research, NOKIA,
Xerox, as well as the National Science Foundation
which awarded also the CAREER Award. Radu is
on the steering board and organizing committees
of conferences such as NDSS, Oakland S&P, CCS,
USENIX Security, SIGMOD, ICDE, FC and others.

